Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

steady state operation
Recently Published Documents


TOTAL DOCUMENTS

596
(FIVE YEARS 81)

H-INDEX

32
(FIVE YEARS 2)

Author(s):  
Salman Harasis ◽  
Saher Albatran ◽  
Eyad Almaita ◽  
Khaled Alzaareer ◽  
Qusay Salem ◽  
...  

<p>Controlling weak grid-connected systems is very challenging. In transient, frequency and voltage oscillations may lead to voltage and/or frequency stability problems and finally lead to system collapse. During steady-state operation and at the point of common coupling (PCC), voltage degradation and grid voltage background harmonics restrict the inverter's functionality, reduce the power flow capability and cause poor power quality. With weak grid connection, grid impedance variance will contaminate the voltage waveform by harmonics and augment the resonance, destabilizing the inverter operation. In this paper, complete mathematical modeling is carried out and state feedback-plus-integral control is implemented to support the stabilization of the system. The proposed controller is adopted to provide a smooth transient under sudden load change by controlling the injected grid current under different grid inductance values. Furthermore, the proposed control is used to reduce the order and size of the inverter output filter while maintaining system stability. The proposed control has been compared with the conventional proportional integral (PI) controller under different scenarios to validate its effectiveness and to strengthen its implementation as a simple controller for distributed generator applications.</p>


Lubricants ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Edward H. Smith

The active control of hydrodynamic bearings is beginning to receive more attention in the pursuit of lower power losses and reduced maintenance. This paper presents a method by which, from simple measurements, rich information can be deduced from a running bearing that can used to modify the operating parameters of the unit. The bearing is a line-pivot, unidirectional, steadily loaded, directly lubricated tilting pad thrust bearing. This control is achieved by designing an Observer whose inputs include the output measurement(s) from the bearing. The Observer is, in some ways, an inverse model of the bearing (or Plant) that runs in parallel to the bearing and estimates the states of the bearing, such as the applied load, pivot height, minimum film thickness, maximum temperature, effective temperature and power loss. These estimated parameters can then be used in a control algorithm to modify bearing parameters such as inlet temperature or pivot location. It is demonstrated that disturbances in the load on the bearing can be detected simply by measuring a representative temperature in the bearing or changes in pivot height. Appropriate corrective action can then be employed. Whilst only steady-state operation is considered, the method could be developed to study time-varying situations.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 47
Author(s):  
Kalamchety Srinivasa Ravi Kumar ◽  
Alagappan Pandian ◽  
Vedula Venkata Sastry ◽  
Dogga Raveendhra

In this paper, a new type of capacitor clamped coupled inductor bidirectional DC–DC converter is proposed, which offers high voltage gain with smooth starting current transients, as well as reduced stresses on the capacitor. Steady state operation, mathematical modelling, and state space modelling for the proposed converter are presented in detail. A simplified single voltage clamped circuit is developed to mitigate the voltage spikes caused due to the coupled inductor by recovering the leakage energy effectively. Moreover, the clamping capacitor helps in reducing the ripples in output voltage, which in effect significantly reduces the stress on the switch and offers less ripple content at the load terminals. Simulation of the proposed converter is carried out using Simulink/MATLAB for the conversion of 24V DC to 200V DC. For this conversion, simulation results have proven that there is reduction of 13.64% of capacitor voltage stresses. Further, under line varying conditions, converter responses have proven that there is a 119% and 25.25% reduction in input current and output voltage transients, respectively. Similarly, 25.25% and 76.5% transient reductions of input current are observed for line and control parameter variations. The hardware investigation of the converter was carried out with a 100 W, 24 V/200 V setup. The converter achieved efficiency of 93.8%. The observations supplement the simulation results.


2022 ◽  
Vol 2150 (1) ◽  
pp. 012015
Author(s):  
G I Nikitina ◽  
A N Kozlov ◽  
M V Penzik

Abstract This paper describes an experimental study of the operation of an internal combustion engine of fueled by a low-calorific value gas. The main operating parameters of low-power ICE were determined. Efficiency was also evaluated when the ICE was converted to operate on producer gas. In the experiment, it was shown that the engine reached a stable operating mode under load and data on the temperature and exhaust gases composition were obtained. According to our estimates, in the steady-state operation of the internal combustion engine with a load, the efficiency factor was about 22 %. When using the model gas, the from generator output power, was about 30-40 % of the nominal value, under variable load conditions. However, it was found that in steady-state operation, the power of the internal combustion engine was 40-55% of the nominal value.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 154
Author(s):  
Michal Frivaldsky ◽  
Miroslav Pavelek

The aim of the proposed paper is the development of an electro-thermal model of semiconductor component using an indirect modelling approach. The approach is based on the integration of the component’s electrical properties considering non-linear behavior of a V-A characteristic. In this way, the identification of semiconductor material properties considering non-linear dependencies and semiconductor volume is provided. The main aim of the presented approach is simplification of the electro–thermal interaction within finite-element modelling of the semiconductor components. In this way, it is possible to omit more complex boundary definitions and the setting of the semiconductor-based physics. The proposed methodology is presented within the development of a simulation model based on a small high-frequency rectifying diode, taking into account its geometric dimensions and the internal arrangement of its structure. Simulation was performed as a transient analysis, while the results from the steady-state operation for various operational conditions were compared to experimental measurements. Comparison between simulation and experiments is within 5% of the relative error. The achieved results represent appropriate accuracy of model behavior compared to the real operation.


Author(s):  
A.A. Shcherba ◽  
◽  
O.D. Podoltsev ◽  
Y.V. Peretiatko ◽  
V.M. Zolotarov ◽  
...  

Based on the theory of thermal circuits, a computer model of an induction channel furnace has been developed, which is used to obtain industrial copper wire rods in the mode of continuous casting. The model allows calculating the established electrothermal processes considering the flows of cold and molten metal in its core. In the developed thermal model, it is proposed to consider the convection fluxes of heat in the metal using controlled current sources. The temperature distribution in the active zone of the channel furnace is calculated, and the influence of the mass flow of metal at the inlet and outlet of the furnace on the non-uniformity of temperature distribution in the active zone is shown. The obtained results allow determining the required electric power of the furnace at different values ​​of the flow rate of the metal that moves continuously through its core while heating to a given temperature. The developed model is relatively easy to implement, using the Matlab/Simulink package, and allows online to estimate the melt temperature in different zones depending on the electric power consumed by the furnace and the metal consumption at the outlet of the furnace, as well as to determine rational modes of its operation. Ref. 7, fig. 4.


ChemCatChem ◽  
2021 ◽  
Author(s):  
Hannes Westphal ◽  
Rico Warias ◽  
Holger Becker ◽  
Matthias Spanka ◽  
Daniele Ragno ◽  
...  

2021 ◽  
Author(s):  
Azarakhsh Jalalvand ◽  
Alan Ali Kaptanoglu ◽  
Alvin Garcia ◽  
Andrew Oakleigh Nelson ◽  
Joseph Abbate ◽  
...  

Abstract Modern tokamaks have achieved significant fusion production, but further progress towards steady-state operation has been stymied by a host of kinetic and MHD instabilities. Control and identification of these instabilities is often complicated, warranting the application of data-driven methods to complement and improve physical understanding. In particular, Alfvén eigenmodes are a class of ubiquitous mixed kinetic and MHD instabilities that are important to identify and control because they can lead to loss of confinement and potential damage to the walls of a plasma device. In the present work, we use reservoir computing networks (RCNs) to classify Alfvén eigenmodes in a large, expert-identified database of DIII-D discharges, covering a broad range of operational parameter space. Despite the large parameter space, we show excellent classification and prediction performance, with an average hit rate of 91% and false alarm ratio of 7%, indicating promise for future implementation with additional diagnostic data and consolidation into a real-time control strategy.


2021 ◽  
Author(s):  
Xueyun Wang ◽  
Xueqiao Xu ◽  
Philip B Snyder ◽  
Zeyu Li

Abstract The BOUT++ six-field turbulence code is used to simulate the ITER 11.5MA hybrid scenario and a brief comparison is made among ITER baseline, hybrid and steady-state operation (SSO) scenarios. Peeling-ballooning instabilities with different toroidal mode numbers dominate in different scenarios and consequently yield different types of ELMs. The energy loss fractions (ΔWped/Wped) caused by unmitigated ELMs in the baseline and hybrid scenarios are large (~2%) while the one in the SSO scenario is dramatically smaller (~1%), which are consistent with the features of type-I ELMs and grassy ELMs respectively. The intra ELM divertor heat flux width in the three scenarios given by the simulations is larger than the estimations for inter ELM phase based on Goldston’s heuristic drift model. The toroidal gap edge melting limit of tungsten monoblocks of divertor targets imposes constraints on ELM energy loss, giving that the ELM energy loss fraction should be smaller than 0.4%, 1.0%, and 1.2% for ITER baseline, hybrid and SSO scenarios, correspondingly. The simulation shows that only the SSO scenario with grassy ELMs may satisfy the constraint.


2021 ◽  
Vol 12 (4) ◽  
pp. 223
Author(s):  
Zhenkang Feng ◽  
Daohan Wang ◽  
Chen Peng ◽  
Wentao Feng ◽  
Bingdong Wang ◽  
...  

Due to their advantages of high power density and high efficiency, permanent magnet synchronous machines (PMSMs) are widely used in the field of electric vehicles (EVs). Vibration and noise are important indicators for evaluating the performance of PMSMs, and the skewed slot method is now widely used to mitigate the torque ripple and noise of motors. In the vector control strategy, the space vector pulse width modulation (SVPWM) method produces sideband voltage harmonics with a frequency near the switching frequency. These harmonics act on the magnetic field to generate an excitation force with a frequency near the switching frequency. This paper compares and analyzes the sideband harmonic current and the exciting force of a skewed slot motor and a straight slot motor during steady-state operation. The research results show that the skewed slot method can effectively mitigate the vibration and noise caused by sideband harmonics.


Export Citation Format

Share Document