Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

axial direction
Recently Published Documents


TOTAL DOCUMENTS

1474
(FIVE YEARS 352)

H-INDEX

40
(FIVE YEARS 6)

Author(s):  
Omar S. Daif ◽  
M. Helmy Abd El-Raouf ◽  
Mohamed Adel Esmaeel ◽  
Abd Elsamie B. Kotb

<span>In this paper, the field analysis of the sleeve rotor induction motor (IM) is carried out taking the rotor ends into consideration. Here, the field system equations are derived using the cylindrical model with applying Maxwell's field equations. It is expected that, both starting and maximum torques will increase with taking the rotor ends than that without rotor ends. A simple model is used to establish the geometry of the rotor ends current density and to investigate the air gap flux density. The magnetic flux is assumed to remain radially constant through the very small air gap length between the sleeve and stator surfaces. Variation of the field in the radial direction is ignored and the skin effect in the axial direction is considered. The axial distributions of the air gap flux density, the sleeve current density components and the force density have been determined. The motor performance is carried out taking into account the effects of the rotor ends on the starting and normal operations. The sleeve rotor resistance and leakage reactance have been obtained in terms of the cylindrical geometry of the machine. These equivalent circuit parameters have been calculated and plotted as functions of the motor speed with and without the rotor ends.</span>


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 157
Author(s):  
Timothy Ngeru ◽  
Dzhem Kurtulan ◽  
Ahmet Karkar ◽  
Stefanie Hanke

multiaxial stress states frequently occur in technical components and, due to the multitude of possible load situations and variations in behaviour of different materials, are to date not fully predictable. This is particularly the case when loads lie in the plastic range, when strain accumulation, hardening and softening play a decisive role for the material reaction. This study therefore aims at adding to the understanding of material behaviour under complex load conditions. Fatigue tests conducted under cyclic torsional angles (5°, 7.5°, 10° and 15°), with superimposed axial static compression loads (250 MPa and 350 MPa), were carried out using smooth specimens at room temperature. A high nitrogen alloyed austenitic stainless steel (nickel free), was employed to determine not only the number of cycles to failure but particularly to aid in the understanding of the mechanical material reaction to the multiaxial stresses as well as modes of crack formation and growth. Experimental test results indicate that strain hardening occurs under the compressive strain, while at the same time cyclic softening is observable in the torsional shear stresses. Furthermore, the cracks’ nature is unusual with multiple branching and presence of cracks perpendicular in direction to the surface cracks, indicative of the varying multiaxial stress states across the samples’ cross section as cross slip is activated in different directions. In addition, it is believed that the static compressive stress facilitated the Stage I (mode II) crack to change direction from the axial direction to a plane perpendicular to the specimen’s axis.


2022 ◽  
Vol 13 (1) ◽  
pp. 15-22
Author(s):  
Yan Zhang ◽  
Quan Han ◽  
Chunlin Xun ◽  
Gongtan Zhang

Abstract. A milling chamber consisting of a rice sieve and a rotating roller plays critical roles in modulating the milling performance of rice grains. However, the mechanism of how the geometries of the rice sieve and rotating roller affect the particle collisions and the interaction time remains not fully understood. Our experimental results show that the milling degree and rate of broken rice of the octagonal rice sieve are largest among the hexagonal sieve, octagonal sieve, and circular sieve. Through the discrete element method, we illustrate that the peak milling degree at the octagonal sieve is attributed to the competition between the decreasing force and increasing milling time with the increase in edges. In addition, the geometries of the convex ribs of the rotating roller are investigated to optimize the structure of the milling chamber. In the left-hand spiral or right-hand spiral of the convex ribs, the rice particles are accumulated in the inlet or outlet regions, respectively, which leads to an uneven milling degree in the axial direction. The uniformity of a milling process can be promoted by increasing the number of convex ribs, which will reduce the milling degree on the other hand.


Author(s):  
Guo Zheng ◽  
Zengqiang Cao ◽  
Minghao Zhang

In this study, a novel method stress wave strengthening (SWS) process based on electromagnetic force was proposed to improve the fatigue life of holed structures. Corresponding tests were carried out to explore the fatigue performance of SWS. Cold expansion (CE) was also investigated for comparison. The fatigue life of SWS and CE samples were evaluated, moreover, the mechanisms of fatigue failures and life enhancements were also discussed. Results showed that double-side SWS extended fatigue life significantly and reduced stiffness degradation more effectively with respect to CE process. Moreover, fatigue cracks commonly appeared at mid-planes of hole surfaces and horizontally grew in SWS samples, which differed a lot from CE samples. Through the residual stress measurement, it is seen that more uniform residual stress along axial direction can be obtained by SWS compared to CE, which can explain the fatigue life enhancement and failure mechanism of SWS method.


Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Yang Liu ◽  
Xiaowei Li ◽  
Zhipeng Wang ◽  
Bin Qin ◽  
Shipeng Zhou ◽  
...  

Abstract Silica microlens arrays (MLAs) with multiple numerical-apertures (NAs) have high thermal and mechanical stability, and have potential application prospects in 3D display and rapid detection. However, it is still a challenge to rapidly fabricate silica MLAs with a larger range of NAs and how to obtain multiple NAs in the same aperture diameter. Here, a wet etching assisted spatially modulated femtosecond laser pulse fabricating technology is proposed. In this technology, Gaussian laser pulse is modulated in the axial direction to create a pulse with a large aspect ratio, which is used to modify the silica to obtain a longer modification distance than traditional technology. After that, a microlens with a larger NA can be obtained by etching, and the NA variable range can be up to 0.06–0.65, and even under the same aperture, the variable NA can range up to 0.45–0.65. In addition, a single focus is radially modulated into several focus with different axial lengths to achieve a single exposure fabricating of MLA with multiple NAs. In characterization of the image under a microscope, the multi-plane imaging characteristics of the MLA are revealed. The proposed technology offers great potential toward numerous applications, including microfluidic adaptive imaging and biomedical sensing.


2022 ◽  
pp. 1-33
Author(s):  
Shahid Ali

The basic properties of classical and quantum plasmas are discussed. Quantum plasmas behave differently due to high densities and low temperatures at nanometer scale in contrast to classical ones which are characterized by low densities and high temperatures. A literature survey is made to investigate the plasma phenomenon with quantum mechanical effects. Classical and quantum viewpoints are also presented to understand the free electron gas in metals. In particular, the excitation of stable plasmon wakefield is studied due to a short electron pulse propagating in axial direction of nanowire. The latter contains degenerate electrons and classical static ions. By using the Trivelpiece-Gould configuration and Fourier transform techniques, a general dispersion is obtained for the electrostatic plasmons and analyzed numerically. Nevertheless, an evolution equation for the wakefield is derived and carried out the stability analysis. In a gold nanowire, the amplitudes of wakefield become significantly modified by the variation of quantum diffraction, quantum exchange-correlations and mode quantization in the radial direction. The present findings may prove useful for investigating new radiation sources in the extreme-ultraviolet range.


2021 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Yao Shi ◽  
Jinyi Ren ◽  
Shan Gao ◽  
Guang Pan

In order to study the influence of pressure-equalizing exhaust at the shoulder of a submarine-launched vehicle on the surface hydrodynamic characteristics, this paper establishes a numerical calculation method based on the VOF multiphase flow model, the standard RNG turbulence model and the overset mesh technology; the method compares the fusion characteristics of the air film at the shoulder of the underwater vehicle, as well as the distribution of surface pressure along the vehicle’s axial direction. The results show that the approximate isobaric zone derived from air film fusion can greatly improve the hydrodynamic characteristics of the vehicle, and the number of venting holes determines the circumferential fusion time of the air film. The greater the number of venting holes, the sooner circumferential fusion starts.


Author(s):  
Jun Xiong ◽  
Yangli Zhu ◽  
Xing Wang ◽  
Haisheng Chen ◽  
Junfeng Wang

Flow field of shroud leakage flow for a single-stage axial turbine has been investigated in this article. The spiral groove seal (SGS) is adopted for shrouded rotor blade to reduce tip leakage and improve turbine aerodynamic performance. A series of three-dimensional (3D) computational fluid dynamics (CFD) simulations are performed to investigate leakage characteristics and flow mechanism of various configurations with different angle, depth, width, and grooves number of the SGS. The original staggered labyrinth seal (LS) is also calculated for comparison. The results illustrate that small spiral groove angle can create more axial flow resistance; meanwhile, it will increase grooves number existing in the axial direction. Groove depth and tooth width will influence the number, shape, and strength of vortex in the groove. The leakage mass flow can be reduced by 36% and isentropic efficiency of the turbine can be increased by 0.26% when spiral groove angle, depth, and width of the SGS are 1.5°, 1.8 mm, and 0.8 mm, respectively. Overall, the optimal SGS can influence vortex generation and enhance energy dissipation in shroud cavity to reduce the leakage and suppress mixing loss of leakage flow with the main flow to some extent. It can be attributed to the combination of throttling effect and pumping effect of the SGS that realize leakage reduction and efficiency improvement. As a result, the SGS can effectively improve tip leakage flow of shrouded blade in axial turbine.


Author(s):  
Chao Lin ◽  
Yu Wang ◽  
Yanan Hu ◽  
Yongquan Yu

A new type of compound transmission gear pair was put forward, called eccentric curve-face gear pair with curvilinear-shaped teeth. It could realize reciprocating motion of the gear shaft when the intersecting shafts achieve transferring motion and power through its unique tooth profile. The compound transmission principle of this gear pair was fully established based on the profile-closure process of axial direction and meshing process of the end face. The tooth surfaces of the eccentric curve-face gear and non-circular gear were generated. The contact paths of different teeth were obtained, and the compound transmission principle of eccentric curve-face gear pair with curvilinear-shaped teeth was verified by tooth contact analysis. By analyzing the mechanical characteristics of time-varying contact points, the changing rule of contact force was studied, and the compound transmission principle of the gear pair was further revealed from mechanics. Moreover, the experimental platform for transmission of eccentric curve-face gear pair with curvilinear-shaped teeth was set up to measure the motion law and contact area, and the correctness of the analysis results was verified.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 23
Author(s):  
Kenta Kikuchi ◽  
Ryuichi Murai ◽  
Tsukasa Hori ◽  
Fumiteru Akamatsu

Ammonia, which has advantages over hydrogen in terms of storage and transportation, is increasingly expected to become a carbon-free fuel. However, the reduction of fuel NOx emitted from ammonia combustion is an unavoidable challenge. There is the report that two-stage combustion with parallel independent jets could achieve Low-NOx combustion under ammonia/methane co-firing conditions. In order to further improve NOx reduction, we experimentally evaluated the effects of secondary air nozzle parameters, such as nozzle diameter and nozzle locations, on combustion characteristics in two-stage combustion of ammonia/natural gas co-firing using parallel independent jets. As a result of the experiments under various secondary air nozzle conditions, it was found that under the conditions where NOx was significantly reduced, the peak temperature in the furnace was observed at 300–500 mm in the axial direction from the burner, and then the temperature decreased toward the downstream of the furnace. We assumed that this temperature distribution reflected the mixing conditions of the fuel and secondary air and estimated the combustion conditions in the furnace. It was confirmed that the two-stage combustion was effective in reducing NOx by forming a fuel rich region near the downstream of the burner, and the lean combustion of the unburned portion of the first stage combustion with secondary air. We confirmed that the low NOx effects could be achieved by two-stage combustion using independent jets from the same wall under appropriate combustion and air nozzle conditions.


Export Citation Format

Share Document