Newton's rings are an interference pattern related to fringes of equal thickness. This image can be obtained on a simple experimental optical setup. Modern common renderers, based on zerothickness ray tracing, calculate highly realistic images of complex 3D scenes, which are computer models of scenes from the real world. However, they do not allow you to reproduce such phenomena as interference, because they ignore even the polarization of light. Interference is studied by physical optics, and it is natural to assume that if the calculation is based on the "tracing" of waves in the scene, this problem can be solved. An algorithm is known when a solid beam of light is used instead of a light wave. The results of the calculations show images of the interference effects; Newton's rings are also calculated. This is an acceptable solution for simple scenes involving a few objects. It is also good for optical design systems, when the result is important, and not the time spent. But not practical for universal renderers, which must calculate the image in an acceptable time for very complex scenes. In this paper, we propose an algorithm based on the traditional method of tracing paths consisting of zero-thickness rays. Only on the last ray of a path that crosses the picture plane is the modification made. It is assumed that these rays characterize spherical wavelets. In this paper, we consider the results of applying the mentioned heuristics to classical optical experiments.