Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Current issue: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'population genetics'

Category : Article

article id 5160, category Article
P. M. A. Tigerstedt. (1982). Metsäpuiden populaatiogenetiikka. Helsingissä 1981 pidetyn symposion tutkimusraportit. Silva Fennica vol. 16 no. 2 article id 5160. https://doi.org/10.14214/sf.a15075
English title: Population genetics of forest trees.
Original keywords: metsäntutkimus; metsänjalostus; kokoukset; siemenviljelmät; metsägenetiikka; populaatiogenetiikka; populaatiorakenne; sopeutuminen ympäristöolosuhteisiin; ekologinen erilaistuminen
English keywords: adaptation; seed orchards; population structure; population genetics; forest research; forest tree breeding; forest genetics; conference; ecological variation
Abstract | View details | Full text in PDF | Author Info

The publication comprises proceedings of a conference held in Helsinki in 1981. Forest tree populations are investigated for population genetic structure, mating systems, mechanisms of genetic adaptation and ecological adaptation. Methods and techniques used in population genetic research of forest trees are presented. Much concern is given to applications by means of forest tree breeding, particularly the seed orchard breeding technique. Generally, the application of population genetics in cultivated forests is discussed.

The PDF includes a preface and the presentations of the conference (25 short papers) in English, and a comprehensive summary of the themes of the conference in Finnish.

  • Tigerstedt, E-mail:
article id 5068, category Article
S. A. Petrov. (1980). Quantitative analysis of the effect of genotype and environment in forest tree populations. Silva Fennica vol. 14 no. 1 article id 5068. https://doi.org/10.14214/sf.a15009
Keywords: heritability; population structure; population genetics; genotype; Symposiums; intrapopulation variability; environment; quantitative characteristics
Abstract | View details | Full text in PDF | Author Info

The paper discusses the theoretical basis of quantitative analysis of the effect of genotype and environment in forest trees. Perhaps the main problem in the understanding of the laws of intrapopulation variability of the species of woody forest plants is the study of the structure of their populations. It may be characterized by a number of parameters. The intrapopulation variability of quantitative characteristics appears as a result of environmental and genetic factors, but to determine the relative weight of these factors in a concrete case is not easy. The study of the structure of a population by its quantitative characteristics has a wider task: to establish the relevance of the hereditary differences of the individuals of a population. Also, the differences caused by diverse growth conditions and how they are reflected in the level of general phenotypic variability of the quantitative characteristics in a given population has to be identified. The author gives examples of assessment of heritability in forest trees.

The PDF includes a summary in Finnish.

  • Petrov, E-mail: sp@mm.unknown (email)

Category : Research article

article id 10000, category Research article
Hamed Yousefzadeh, Rasta Rajaei, Anna Jasińska, Łukasz Walas, Yann Fragnière, Gregor Kozlowski. (2018). Genetic diversity and differentiation of the riparian relict tree Pterocarya fraxinifolia (Juglandaceae) along altitudinal gradients in the Hyrcanian forest (Iran). Silva Fennica vol. 52 no. 5 article id 10000. https://doi.org/10.14214/sf.10000
Keywords: plant variation; Caucasian wingnut; population genetics; refugium; riparian forest; river system
Highlights: The Caucasian wingnut (Pterocarya fraxinifolia Spach) is an emblematic and relict riparian tree with limited distribution in Hyrcanian forest which investigating its genetic population structure and diversity along altitudinal gradients, and migration patterns are novel; We concluded that rivers are the main seed dispersal vector among P. fraxinifolia populations and there was no trend from upstream to downstream; The high level of gene flow and uniform genetic diversity along each river system suggest the “classical” metapopulation structure of the species.
Abstract | Full text in HTML | Full text in PDF | Author Info

Riparian trees, especially relict trees, are attractive and important for research to understand both past and recent biogeographical and evolutionary processes. Our work is the first study to elucidate the genetic diversity and spatial genetic structure of the canopy-dominating riparian Pterocarya fraxinifolia (Juglandaceae) along two altitudinal gradients in different river systems of the Hyrcanian forest, which is one of the most important refugium of relict trees in Western Eurasia. Altitudinal gradients were chosen along two river systems at 100, 400 and 900 m a.s.l. Leaf samples were collected from 116 trees, and the genetic diversity was evaluated with eight SSR markers. Overall, 39 alleles were identified for all of the populations studied. The observed heterozygosity (Ho) varied from 0.79 to 0.87 (with a mean of 0.83). The results of the AMOVA analysis indicated that the variation within populations was 88%, whereas the variation among populations was 12% for all of the gradients. A structure analysis indicated that 93% of the trees were grouped in the same gradient. The genetic distance based on Fst confirmed the structure result and indicated a high rate of gene flow among the investigated populations. Based on high gene flow (low differentiation of the population along the same river) and the clearly distinct genetic structure of the investigated gradients, it can be concluded that rivers are the main seed dispersal vector among P. fraxinifolia populations. The genetic diversity of P. fraxinifolia did not show any trend from upstream to downstream. The high level of gene flow and uniform genetic diversity along each river suggest the “classical” metapopulation structure of the species.

  • Yousefzadeh, Department of Environmental Science, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran E-mail: h.yousefzadeh@modares.ac.ir (email)
  • Rajaei, Department of Forestry, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran E-mail: r.rajaei@modares.ac.ir
  • Jasińska, Laboratory of Systematics and Geography, Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, PL-62-035 Kornik, Poland E-mail: jasiak9@wp.pl
  • Walas, Laboratory of Systematics and Geography, Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, PL-62-035 Kornik, Poland E-mail: lukaswalas@wp.pl
  • Fragnière, Department of Biology and Botanic Garden, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland E-mail: yann.fragniere@unifr.ch
  • Kozlowski, Department of Biology and Botanic Garden, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland; Natural History Museum Fribourg, Chemin du Musée 6, CH-1700 Fribourg, Switzerland E-mail: gregor.kozlowski@unifr.ch

Category : Research note

article id 10524, category Research note
Arnis Gailis, Pauls Zeltiņš, Roberts Matisons, Andis Purviņš, Juris Augustovs, Valts Vīndedzis, Āris Jansons. (2021). Local adaptation of phenotypic stem traits distinguishes two provenance regions of silver birch in Latvia. Silva Fennica vol. 55 no. 2 article id 10524. https://doi.org/10.14214/sf.10524
Keywords: Betula pendula; population genetics; genetic parameters; climate-smart forestry; phenotypic traits
Highlights: Two provenance subregions in Latvia – coastal and inland – were distinguished; Silver birch populations in inland region possessed better growth, higher heritability, and phenotypic plasticity; Moderate to high heritability for stem quality was estimated in both regions; Silver birch from inland region possesses higher potential for improvement of adaptability.
Abstract | Full text in HTML | Full text in PDF | Author Info

Populations of tree species with a wide geographic range, such as silver birch (Betula pendula Roth), show genetic specialization to native environments, while maintaining high phenotypical plasticity. Accordingly, assessment of local specialization is essential for adaptive management. The aim of the study was to detect geographic patterns of local adaptation of growth and stem quality based on two open-pollinated progeny trials in Latvia testing local material. Two provenance regions differing by continentality were distinguished, which also differed in genetic control of growth traits, likely originating from the post-glacial recolonization of vegetation and subsequent natural adaptation. Heritability of the traits was estimated for each of the distinguished regions, indicating differing patterns of genetic adaptation and potential for future selection. Trees from the more continental inland showed superior growth and possessed higher heritability. The coastal provenance region showed slower growth and intermediate heritability of the respective traits. Moderate to high heritability for stem quality traits was estimated irrespectively of region. Overall, better growth and higher heritability suggests that anthropogenic selection within the best inland provenances may constitute better performing and adaptable breeding population compared to the coastal one. Still, overlapping phenotypical variation and heritability of quality traits implies improved stemwood quality for plywood regardless of the provenance region. High adaptive capacity of silver birch genotypes suggests ability to cope with climatic changes, highlighting its potential for climate-smart forestry.

  • Gailis, Latvian State Forest Research Institute Silava, 111 Rigas street, LV-2169, Salaspils, Latvia E-mail: arnis.gailis@silava.lv
  • Zeltiņš, Latvian State Forest Research Institute Silava, 111 Rigas street, LV-2169, Salaspils, Latvia E-mail: pauls.zeltins@silava.lv (email)
  • Matisons, Latvian State Forest Research Institute Silava, 111 Rigas street, LV-2169, Salaspils, Latvia ORCID https://orcid.org/0000-0002-4042-0689 E-mail: roberts.matisons@silava.lv
  • Purviņš, Latvian State Forest Research Institute Silava, 111 Rigas street, LV-2169, Salaspils, Latvia E-mail: andis.purvins@silava.lv
  • Augustovs, Latvian State Forest Research Institute Silava, 111 Rigas street, LV-2169, Salaspils, Latvia E-mail: juris.augustovs@silava.lv
  • Vīndedzis, Latvian State Forest Research Institute Silava, 111 Rigas street, LV-2169, Salaspils, Latvia E-mail: valts.vindedzis@silava.lv
  • Jansons, Latvian State Forest Research Institute Silava, 111 Rigas street, LV-2169, Salaspils, Latvia ORCID https://orcid.org/0000-0001-7981-4346 E-mail: aris.jansons@silava.lv

Click this link to register to Silva Fennica.
If you are a registered user, log in to save your selected articles for later access.
Sign up to receive alerts of new content
Your selected articles