
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy arcsin() Function
The NumPy arcsin() function is used to compute the inverse sine (arcsine) of each element in an input array. It calculates the angle (in radians) whose sine is the input value.
- Domain: The function accepts input values between -1 and 1, inclusive. Values outside this domain will result in an error.
- Range: The output values lie in the range of [-/2, /2], as the arcsine function returns angles in this range.
Syntax
Following is the syntax of the NumPy arcsin() function −
numpy.arcsin(x, /, out=None, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
Parameters
This function accepts the following parameters −
- x: The input array or scalar, which should have values in the range [-1, 1]. The function computes the arcsine of each element of the array or scalar.
- out (optional): A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned.
- where (optional): This condition is broadcast over the input. At locations where the condition is True, the result will be computed. Otherwise, the result will retain its original value.
- casting (optional): Controls what kind of data casting may occur. Defaults to 'same_kind'.
- order (optional): Controls the memory layout order of the result. 'C' means C-order, 'F' means Fortran-order, 'A' means 'F' if inputs are all F, 'C' otherwise, 'K' means match the layout of the inputs as closely as possible.
- dtype (optional): The type of the returned array and of the accumulator in which the elements are processed. The dtype of x is used by default unless dtype is specified.
- subok (optional): If True, then sub-classes will be passed-through, otherwise the returned array will be forced to be a base-class array.
Return Value
This function returns an array where each element is the arcsine (inverse sine) of the corresponding element in the input array x, in radians.
Example: Basic Usage of arcsin() Function
In the following example, we use the arcsin() function to compute the arcsine of each element in a 1-dimensional array −
import numpy as np # Creating a 1-dimensional array with values between -1 and 1 arr = np.array([-1, -0.5, 0, 0.5, 1]) # Applying arcsin to each element result = np.arcsin(arr) print(result)
The output obtained will be −
[-1.57079633 -0.52359878 0. 0.52359878 1.57079633]
Example: Arcsine of Angles in Degrees
In this example, we first calculate the arcsine in radians and then convert the result to degrees using numpy.degrees() function −
import numpy as np # Creating an array of values between -1 and 1 values = np.array([-1, -0.5, 0, 0.5, 1]) # Calculate arcsine in radians radians_result = np.arcsin(values) # Convert radians to degrees degrees_result = np.degrees(radians_result) print(degrees_result)
This will produce the following result −
[-90. -30. 0. 30. 90.]
Example: Arcsine of a Single Scalar Value
In this example, we are using the arcsin() function to calculate the arcsine of a single scalar value −
import numpy as np # Scalar value scalar = 0.5 # Applying arcsin to the scalar result = np.arcsin(scalar) print(result)
The output obtained is −
0.5235987755982989
Example: Handling Out-of-Range Values
In this example, we attempt to compute the arcsine of values outside the valid range [-1, 1]. This will raise a runtime warning and return NaN values for such entries −
import numpy as np # Array with a value outside the valid range arr_out_of_range = np.array([2, -1.5, 0]) # Applying arcsin to the array result = np.arcsin(arr_out_of_range) print(result)
This will produce the following result with a runtime warning −
/home/cg/root/673ae90fcf07d/main.py:7: RuntimeWarning: invalid value encountered in arcsin result = np.arcsin(arr_out_of_range) [nan nan 0.]