
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy - Byte Swapping
Swapping Axes of Arrays in NumPy
Byte swapping is a process used to convert data between different byte orders, also known as endianness. In computing, different systems might use different byte orders to represent multi-byte data types (e.g., integers, floats). Byte swapping ensures that data is interpreted correctly when transferred between systems with different endianness.
NumPy provides the byteswap() function to swap the bytes of an array. This is particularly useful when you need to convert data to the correct endianness for compatibility with other systems or formats.
Understanding Byte Order
Byte Order (Endianness) is the sequence in which bytes are ordered within larger data types. There are two primary byte orders −
- Little-Endian − The least significant byte is stored at the smallest address. For example, in the number 0x1234, 0x34 would be stored first.
- Big-Endian − The most significant byte is stored at the smallest address. For the same number 0x1234, 0x12 would be stored first.
The numpy.ndarray.byteswap() Function
The numpy.ndarray.byteswap() function is used to swap the byte order of the elements in a NumPy array. This function toggles between the two representations: bigendian and little-endian.
The byteswap() function is used on arrays with specific data types and does not affect the shape or size of the array. Following is the syntax −
numpy.ndarray.byteswap(inplace=False)
Where, if inplace is "True", the array is modified in place. If "False" (default), a new array with swapped bytes is returned.
Example: Swapping Bytes in a Simple Array
In the following example, we are swapping bytes in an array using the byteswap() function in NumPy −
import numpy as np a = np.array([1, 256, 8755], dtype = np.int16) print ('Our array is:', a) print ('Representation of data in memory in hexadecimal form:', map(hex,a)) # We can see the bytes being swapped print ('Applying byteswap() function:', a.byteswap()) print ('In hexadecimal form:', map(hex,a))
Following is the output obtained −
Our array is: [ 1 256 8755] Representation of data in memory in hexadecimal form: <map object at 0x7fdfa46a3370> Applying byteswap() function: [ 256 1 13090] In hexadecimal form: <map object at 0x7fdff5867190>
Example: Byte Swapping In-Place
We can modify the array in place by setting the "inplace" parameter to "True" in the byteswap() function, swapping the bytes directly within the original array −
import numpy as np # Creating a NumPy array with 32-bit integers arr = np.array([1, 256, 65535], dtype=np.int32) print("Original Array:") print(arr) # Perform in-place byte swapping arr.byteswap() print("\nArray After In-Place Byte Swapping:") print(arr)
The result produced is as follows −
Original Array: [ 1 256 65535] Array After In-Place Byte Swapping: [ 1 256 65535]
When to Use Byte Swapping
We can use Byte swapping in the following scenarios −
- Interoperability − When data is exchanged between systems with different endianness, byte swapping ensures correct interpretation.
- Data Reading/Writing − When dealing with raw binary files or network protocols that use different byte orders, byte swapping is necessary to correctly read or write data.
- Legacy Systems − Working with legacy systems or file formats that use specific byte orders might require byte swapping for correct data handling.