
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy - Binomial Distribution
What is a Binomial Distribution?
The Binomial Distribution is a discrete probability distribution that describes the number of successes in a fixed number of independent trials, each with the same probability of success.
It is defined by two parameters: the number of trials (n) and the probability of success (p) in each trial. The probability mass function (PMF) of the binomial distribution gives the probability of getting exactly k successes in n trials. The formula for the PMF is −
P(X = k) = C(n, k) * pk * (1 - p)(n - k)
Where C(n, k) is the binomial coefficient, which can be calculated as −
C(n, k) = n! / (k! * (n - k)!)
Binomial Distributions in NumPy
NumPy provides the numpy.random.binomial() function to generate samples from a binomial distribution. This function allows you to specify the number of trials, the probability of success, and the size of the generated samples.
Example
In this example, we generate 10 random samples from a binomial distribution with 10 trials and a success probability of 0.5 −
import numpy as np # Generate 10 random samples from a binomial distribution with 10 trials and a success probability of 0.5 samples = np.random.binomial(n=10, p=0.5, size=10) print("Random samples from binomial distribution:", samples)
Following is the output obtained −
Random samples from binomial distribution: [5 7 5 7 1 3 5 8 7 5]
Visualizing Binomial Distributions
Visualizing binomial distributions helps to understand their properties better. We can use libraries such as Matplotlib to create histograms that display the distribution of generated samples.
Example
In the following example, we are first generating 1000 random samples from a binomial distribution with 10 trials and a success probability of 0.5. We then visualize this distribution by creating a histogram −
import numpy as np import matplotlib.pyplot as plt # Generate 1000 random samples from a binomial distribution with 10 trials and a success probability of 0.5 samples = np.random.binomial(n=10, p=0.5, size=1000) # Create a histogram to visualize the distribution plt.hist(samples, bins=np.arange(12) - 0.5, edgecolor='black', density=True) plt.title('Binomial Distribution') plt.xlabel('Number of successes') plt.ylabel('Frequency') plt.xticks(range(11)) plt.show()
The histogram shows the frequency of the number of successes in the binomial trials. The bars represent the probability of each possible outcome, which forms the characteristic shape of a binomial distribution −

Applications of Binomial Distributions
Binomial distributions are used in various fields, including statistics, medicine, quality control, and social sciences. Here are a few practical applications −
- Quality Control: Used to model the number of defective items in a batch of products.
- Medicine: Used to model the number of patients who recover from a treatment out of a sample of patients.
- Survey Analysis: Used to model the number of people who respond positively to a survey question.
Generating Cumulative Binomial Distributions
Sometimes, we are interested in the cumulative distribution function (CDF) of a binomial distribution, which gives the probability of getting up to and including k successes in n trials.
NumPy does not have a built-in function for the CDF of a binomial distribution, but we can calculate it using a loop and the scipy.stats.binom.cdf() function from the SciPy library.
Example
In this example, we are generating cumulative binomial distribution using NumPy library −
import numpy as np import matplotlib.pyplot as plt from scipy.stats import binom # Define the number of trials and success probability n = 10 p = 0.5 # Generate the cumulative distribution function (CDF) values x = np.arange(0, n+1) cdf = binom.cdf(x, n, p) # Plot the CDF plt.plot(x, cdf, marker='o', linestyle='-', color='b') plt.title('Cumulative Binomial Distribution') plt.xlabel('Number of successes') plt.ylabel('Cumulative probability') plt.grid(True) plt.show()
The plot shows the cumulative probability of getting up to and including each number of successes in the binomial trials. The CDF is a step function that increases to 1 as the number of successes increases −

Properties of Binomial Distributions
Binomial distributions have several key properties, they are −
- Discrete Nature: The binomial distribution is discrete, meaning it only takes on integer values.
- Mean: The mean of a binomial distribution is given by n * p.
- Variance: The variance of a binomial distribution is given by n * p * (1 - p).
- Symmetry: When p = 0.5, the binomial distribution is symmetric.
Binomial Distribution for Hypothesis Testing
Binomial distributions are often used in hypothesis testing, particularly in tests for proportions.
One common test is the binomial test, which is used to determine if the proportion of successes in a sample is significantly different from a specified proportion. Here is an example using the scipy.stats.binom_test() function.
Example
In this example, we perform a binomial test to determine if the proportion of successes (8 out of 10) is significantly different from 0.5. The p-value indicates the probability of obtaining a result at least as extreme as the observed result, assuming the null hypothesis is true −
from scipy.stats import binom_test # Number of successes successes = 8 # Number of trials trials = 10 # Hypothesized probability of success p = 0.5 # Perform the binomial test p_value = binom_test(successes, trials, p) print("P-value from binomial test:", p_value)
The output obtained is as shown below −
/home/cg/root/673c4ae169586/main.py:13: DeprecationWarning: 'binom_test' is deprecated in favour of 'binomtest' from version 1.7.0 and will be removed in Scipy 1.12.0. p_value = binom_test(successes, trials, p) P-value from binomial test: 0.109375
Seeding for Reproducibility
To ensure reproducibility, you can set a specific seed before generating binomial distributions. This ensures that the same sequence of random numbers is generated each time you run the code.
Example
By setting the seed, you ensure that the random generation produces the same result every time the code is executed, as shown in the example below −
import numpy as np # Set the seed for reproducibility np.random.seed(42) # Generate 10 random samples from a binomial distribution with 10 trials and a success probability of 0.5 samples = np.random.binomial(n=10, p=0.5, size=10) print("Random samples with seed 42:", samples)
The result produced is as follows −
Random samples with seed 42: [4 8 6 5 3 3 3 7 5 6]