
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy - Sum
What is Sum?
In mathematics, a sum is the result of adding two or more numbers together. For example, the sum of 2 and 3 is 5.
It is often represented using the plus symbol (+). Summation can also involve adding a sequence of numbers, often using the Greek letter sigma () to denote the operation.
The NumPy sum() Function
The sum() function in NumPy calculates the sum of array elements along a specified axis, providing flexibility to sum across rows, columns, or the entire array.
Following is the basic syntax of the sum() function in NumPy −
numpy.sum(a, axis=None, dtype=None, out=None, keepdims=False)
Where,
- a: The input array containing the elements to sum.
- axis: The axis along which to sum. If None, it sums all the elements of the array. For multi-dimensional arrays, you can specify an axis (0 for rows, 1 for columns, etc.).
- dtype: The data type to use for the sum. If not specified, it defaults to the data type of the array.
- out: A location where the result will be stored. If provided, it must be of the same shape and type as the input array.
- keepdims: If True, the reduced axes are kept in the result as dimensions with size one. This is useful for broadcasting.
Summing All Elements of a 1D Array
If you have a one-dimensional array, you can use the numpy.sum() function to calculate the sum of all its elements. Following is an example −
import numpy as np # Define a 1D array arr = np.array([1, 2, 3, 4, 5]) # Calculate the sum of all elements total_sum = np.sum(arr) print("Total sum of the array:", total_sum)
Following is the output obtained −
Total sum of the array: 15
Summing Along a Specific Axis in a 2D Array
In a two-dimensional array, you can compute the sum along a specific axis. For example, summing along the rows or columns −
import numpy as np # Define a 2D array arr_2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # Sum along rows (axis=1) sum_rows = np.sum(arr_2d, axis=1) # Sum along columns (axis=0) sum_columns = np.sum(arr_2d, axis=0) print("Sum along rows:", sum_rows) print("Sum along columns:", sum_columns)
Following is the output obtained −
Sum along rows: [ 6 15 24] Sum along columns: [12 15 18]
Summing with a Specified Data Type
You can also specify the data type in which you want the sum to be computed. This is especially useful when dealing with large numbers or when you need the result in a specific precision (such as float64). Here is an example −
import numpy as np # Define an array of integers arr_int = np.array([10, 20, 30]) # Calculate the sum with a specified data type (float64) sum_float = np.sum(arr_int, dtype=np.float64) print("Sum with dtype float64:", sum_float)
Following is the output obtained −
Sum with dtype float64: 60.0
Summing with "Keepdims" Parameter
The keepdims parameter helps preserve the dimensionality of the original array after the sum operation. If set to True, the result will have the same number of dimensions as the input array, but the size of the summed axes will be reduced to one.
import numpy as np # Define a 2D array arr_2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # Sum along columns while keeping dimensions sum_keepdims = np.sum(arr_2d, axis=0, keepdims=True) print("Sum with keepdims=True:", sum_keepdims)
Following is the output obtained −
Sum with keepdims=True: [[12 15 18]]
Applications of NumPy Sum
The numpy.sum() function has a wide range of applications in scientific computing, data analysis, and machine learning. Some common use cases are −
- Summing over rows or columns in matrices: In data science, you often need to calculate sums along specific axes to summarize data in tables or matrices.
- Computing total values in an array: Summing elements in an array can help in financial analysis, statistics, and scientific computations, such as calculating the total of measurements or quantities.
- Data aggregation: When analyzing data, summing values can be part of aggregation operations, such as finding total sales or calculating the cumulative sum of some data points.
- Feature scaling: In machine learning, the sum of features is often used in data normalization or scaling to adjust the range of features.
Optimizing the Sum Calculation
NumPy is optimized for fast array operations, and the numpy.sum() function is highly efficient. However, there are a few ways to further optimize your sum calculations −
- Using the out parameter: If you want to store the result of the sum in a pre-existing array, you can use the out parameter, which avoids creating a new array and helps save memory.
- Using axis wisely: Specify the axis only when necessary. Summing over the whole array by default is the fastest operation, but summing along specific axes might be slower depending on the data.