
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy arctan2() Function
The NumPy arctan2() function is used to compute the inverse tangent of two arrays (y, x) element-wise.
It returns the angle (in radians) between the positive x-axis and the point (x, y) on the plane, calculated as arctan(y / x), but with appropriate handling of the signs of both arguments to determine the correct quadrant of the result.
This function is particularly useful for calculating the angle from the origin to a point (x, y).
- Domain: The function accepts two input arrays or scalars representing the y and x values. Both inputs can be scalars, arrays, or a combination thereof. The domain is all real numbers.
- Range: The output values lie in the range [-, ], as the angle can be positive or negative depending on the quadrant.
Syntax
Following is the syntax of the NumPy arctan2() function −
numpy.arctan2(y, x, /, out=None, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
Parameters
This function accepts the following parameters −
- y: The y-coordinate or array of y-values. This parameter represents the vertical distance from the origin to the point (x, y).
- x: The x-coordinate or array of x-values. This parameter represents the horizontal distance from the origin to the point (x, y).
- out (optional): A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned.
- where (optional): This condition is broadcast over the input. At locations where the condition is True, the result will be computed. Otherwise, the result will retain its original value.
- casting (optional): Controls what kind of data casting may occur. Defaults to 'same_kind'.
- order (optional): Controls the memory layout order of the result. 'C' means C-order, 'F' means Fortran-order, 'A' means 'F' if inputs are all F, 'C' otherwise, 'K' means match the layout of the inputs as closely as possible.
- dtype (optional): The type of the returned array and of the accumulator in which the elements are processed. The dtype of y and x is used by default unless dtype is specified.
- subok (optional): If True, then sub-classes will be passed-through, otherwise the returned array will be forced to be a base-class array.
Return Value
This function returns an array where each element is the arctangent (inverse tangent) of the corresponding pair of elements (y, x) in the input arrays, in radians. The angle is calculated based on the signs of both the x and y values to determine the correct quadrant.
Example: Basic Usage of arctan2() Function
In the following example, we use the arctan2() function to compute the arctangent of pairs of values (y, x) in two 1-dimensional arrays −
import numpy as np # Creating two 1-dimensional arrays for y and x y = np.array([1, 1, -1, -1]) x = np.array([1, -1, 1, -1]) # Applying arctan2 to each pair (y, x) result = np.arctan2(y, x) print(result)
The output obtained will be −
[ 0.78539816 2.35619449 -0.78539816 -2.35619449]
Example: Arctangent of Arrays with Different Shapes
In this example, we calculate the arctangent for arrays of different shapes. NumPy will broadcast the arrays to have compatible shapes before performing the operation −
import numpy as np # Creating 1-dimensional arrays for y and x y = np.array([1, 2, 3]) x = np.array([4, 5, 6]) # Applying arctan2 to each pair (y, x) result = np.arctan2(y, x) print(result)
This will produce the following result −
[0.24497866 0.38050638 0.46364761]
Example: Arctangent with Scalars
In this example, we calculate the arctangent of a pair of scalar values (y, x) −
import numpy as np # Scalar values for y and x y = 1 x = 1 # Applying arctan2 to the scalar values result = np.arctan2(y, x) print(result)
The output obtained is −
0.7853981633974483
Example: Arctangent for Negative Values
In this example, we calculate the arctangent for pairs of negative values for y and x. The function returns angles corresponding to the correct quadrant based on the signs of both y and x −
import numpy as np # Negative values for y and x y = np.array([-1, -1, 1, 1]) x = np.array([-1, 1, -1, 1]) # Applying arctan2 to each pair (y, x) result = np.arctan2(y, x) print(result)
This will produce the following result −
[-2.35619449 -0.78539816 2.35619449 0.78539816]