
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy arctanh() Function
The NumPy arctanh() function computes the inverse hyperbolic tangent (area hyperbolic tangent) of each element in the input array. The inverse hyperbolic tangent is also known as atanh or tanh-1 and is mathematically defined as −
arctanh(x) = 0.5 * ln((1 + x) / (1 - x))
The function is the inverse of the hyperbolic tangent function (tanh()) and returns values in radians. The arctanh() is a multivalued function, for each real number x there are infinitely many numbers of complex number z such that tanh(z) = x. The convention is to return the z whose imaginary part lies in [-pi/2, pi/2].
For real-valued input data types, arctanh always returns real output. For each value that cannot be expressed as a real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, arctanh() is a complex analytical function that ranges between [-1, -infinite] and [1, infinite] and is continuous from above on the former and from below on the latter.
Syntax
Following is the syntax of the NumPy arctanh() function −
numpy.arctanh(x, out=None, where=True, casting='same_kind', order='K', dtype=None, subok=True)
Parameters
Following are the parameters of the NumPy arctanh() function −
- x: Input array, it can be a NumPy array, list, or scalar value. The elements must satisfy -1 < x < 1 for real results.
- out (optional): Alternate output array to place the result. It must have the same shape as the expected output.
- where (optional): A Boolean array. If True, compute the result; otherwise, it leaves the corresponding output elements unchanged.
- dtype (optional): Specifies the data type of the result.
- casting (optional): Ensures equivalent type conversion occurs. For example, converting from `float32` to `float64` is allowed, but converting from `float64` to `int32` is not.
- subok (optional): Determines whether to subclass the output array if the data type is changed or to return a base-class array.
- order (optional): Specifies the memory layout of the array −
- 'C': C-style row-major order.
- 'F': Fortran-style column-major order.
- 'A': 'F' if the input is Fortran contiguous, 'C' otherwise.
- 'K': This is the default value. Keeps the order as close as possible to the input.
Return Values
This function returns a NumPy array with the inverse hyperbolic tangent of the input values. If an input value is outside the range it results nan.
Example
Following is a basic example to compute the inverse hyperbolic tangent of each element in an array using the NumPy arctanh() function −
import numpy as np # input array x = np.array([-0.5, 0, 0.5]) # applying arctanh result = np.arctanh(x) print("Arctanh Result:", result)
Output
Following is the output of the above code −
Arctanh Result: [-0.54930614 0. 0.54930614]
Example: Scalar Input as an Argument
The arctanh() function also accepts a scalar input. In the following example, we have passed 0.5 as an argument to the arctanh() function −
import numpy as np # scalar input scalar = 0.5 # applying arctanh result = np.arctanh(scalar) print("Arctanh Result for Scalar Input:", result)
Output
Following is the output of the above code −
Arctanh Result for Scalar Input: 0.5493061443340548
Example: Multi-dimensional Array
The arctanh() function operates on multi-dimensional arrays. In the following example, we have created a 2X2 NumPy array, where each element computes its inverse hyperbolic tangent −
import numpy as np # 2D array x = np.array([[-0.5, 0], [0.5, 0.8]]) result = np.arctanh(x) print("Arctanh Result for 2D Array:\n", result)
Output
Following is the output of the above code −
Arctanh Result for 2D Array: [[-0.54930614 0. ] [ 0.54930614 1.09861229]]
Example: Plotting 'arctanh()' Function
In the following example, we have plotted the behaviour of the arctanh() function. To achieve this, we need to import the numpy and matplotlib.pyplot modules −
import numpy as np import matplotlib.pyplot as plt x = np.linspace(-0.99, 0.99, 100) # input range (-1 < x < 1) y = np.arctanh(x) # applying arctanh plt.plot(x, y) plt.title("Inverse Hyperbolic Tangent Function") plt.xlabel("Input") plt.ylabel("arctanh(x)") plt.grid() plt.show()