
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
Python Numpy Broadcast() Class
The Numpy Broadcast() Class mimics the broadcasting mechanism and returns an object that encapsulates the result of broadcasting one array against another. This class takes arrays as input parameters.
This class allows operations on arrays of different shapes by virtually expanding the smaller array to match the shape of the larger array without actually creating a larger array in memory.
Syntax
The syntax for the numpy.broadcast() class is as follows −
numpy.broadcast(*array_like)
Parameter
The Numpy Broadcast() class takes *array_like as the input parameter, which are the input arrays that need to be broadcast against each other.
Return Value
It returns a numpy.broadcast object that can be used to iterate over the arrays.
Example 1
Following is the example of creating a broadcast array using Numpy Broadcast() class. Here, the arrays a and b are broadcasted to a common shape (3, 3) and iterated over element-wise −
import numpy as np scalar = 5 array_1d = np.array([1, 2, 3]) broadcast_obj = np.broadcast(scalar, array_1d) print("Broadcasted Shape:", broadcast_obj.shape) print("Broadcasted Elements:") for x, y in broadcast_obj: print(f"({x}, {y})")
Output
Broadcasted Shape: (3,) Broadcasted Elements: (5, 1) (5, 2) (5, 3)
Example 2
Below example shows broadcasting a 1D array [1, 2, 3] with a 2D array [[4], [5], [6]]. The 1D array is broadcast across the second dimension of the 2D array and creating a compatible shape for element-wise operations −
import numpy as np array_1d = np.array([1, 2, 3]) array_2d = np.array([[4], [5], [6]]) broadcast_obj = np.broadcast(array_1d, array_2d) print("Broadcasted Shape:", broadcast_obj.shape) print("Broadcasted Elements:") for x, y in broadcast_obj: print(f"({x}, {y})")
Output
Broadcasted Shape: (3, 3) Broadcasted Elements: (1, 4) (2, 4) (3, 4) (1, 5) (2, 5) (3, 5) (1, 6) (2, 6) (3, 6)
Example 3
Here in this example we are comparing numpy.broadcast() class with the built-in broadcast of Numpy library −
import numpy as np x = np.array([[1], [2], [3]]) y = np.array([4, 5, 6]) # Broadcasting x against y b = np.broadcast(x, y) # Using nditer to iterate over the broadcasted object print('Broadcast x against y:') for r, c in np.nditer([x, y]): print(r, c) print('\n') # Shape attribute returns the shape of the broadcast object print('The shape of the broadcast object:') print(b.shape) print('\n') # Adding x and y manually using broadcast b = np.broadcast(x, y) c = np.empty(b.shape) print('Add x and y manually using broadcast:') print(c.shape) print('\n') # Compute the addition manually c.flat = [u + v for (u, v) in np.nditer([x, y])] print('After applying the flat function:') print(c) print('\n') # Same result obtained by NumPy's built-in broadcasting support print('The summation of x and y:') print(x + y)
Output
The shape of the broadcast object: (3, 3) Add x and y manually using broadcast: (3, 3) After applying the flat function: [[5. 6. 7.] [6. 7. 8.] [7. 8. 9.]] The summation of x and y: [[5 6 7] [6 7 8] [7 8 9]]