
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy hypot() Function
The NumPy hypot() function is used to calculate the Euclidean distance (or hypotenuse) between two points (x, y) in a 2D plane. It computes the value of sqrt(x2 + y2) for each pair of corresponding elements from two arrays or scalars.
This function is commonly used to calculate the distance between two points in geometry or to compute the magnitude of a 2D vector.
- Domain: The function accepts two input arrays or scalars representing the x and y coordinates of points. Both inputs can be scalars, arrays, or a combination thereof. The domain is all real numbers.
- Range: The output values are non-negative real numbers, representing the Euclidean distance or magnitude.
Syntax
Following is the syntax of the NumPy hypot() function −
numpy.hypot(x, y, /, out=None, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
Parameters
This function accepts the following parameters −
- x: The first input array or scalar representing the x-coordinates of points.
- y: The second input array or scalar representing the y-coordinates of points.
- out (optional): A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned.
- where (optional): This condition is broadcast over the input. At locations where the condition is True, the result will be computed. Otherwise, the result will retain its original value.
- casting (optional): Controls what kind of data casting may occur. Defaults to 'same_kind'.
- order (optional): Controls the memory layout order of the result. 'C' means C-order, 'F' means Fortran-order, 'A' means 'F' if inputs are all F, 'C' otherwise, 'K' means match the layout of the inputs as closely as possible.
- dtype (optional): The type of the returned array and of the accumulator in which the elements are processed. The dtype of x and y is used by default unless dtype is specified.
- subok (optional): If True, then sub-classes will be passed-through, otherwise the returned array will be forced to be a base-class array.
Return Value
This function returns an array where each element is the Euclidean distance (or hypotenuse) calculated from the corresponding pair of elements (x, y) from the input arrays. The result represents the distance between points (x, y) in the 2D plane.
Example: Basic Usage of hypot() Function
In the following example, we use the hypot() function to compute the Euclidean distance between points (x, y) in two 1-dimensional arrays −
import numpy as np # Creating two 1-dimensional arrays for x and y x = np.array([3, 4, 5]) y = np.array([4, 3, 12]) # Applying hypot to each pair (x, y) result = np.hypot(x, y) print(result)
The output obtained will be −
[ 5. 5. 13.]
Example: Hypotenuse with Scalars
In this example, we calculate the Euclidean distance (hypotenuse) for scalar values −
import numpy as np # Scalar values for x and y x = 3 y = 4 # Applying hypot to the scalar values result = np.hypot(x, y) print(result)
The output obtained is −
5.0
Example: Hypotenuse for Arrays of Different Shapes
In this example, we calculate the Euclidean distance for arrays of different shapes. NumPy will broadcast the arrays to have compatible shapes before performing the operation −
import numpy as np # Creating 1-dimensional arrays for x and y x = np.array([1, 2, 3]) y = np.array([4, 5, 6]) # Applying hypot to each pair (x, y) result = np.hypot(x, y) print(result)
This will produce the following result −
[4.12310563 5.38516481 6.70820393]
Example: Hypotenuse with Negative Values
In this example, we calculate the Euclidean distance for arrays containing negative values. The function handles negative values properly, as distance is always non-negative −
import numpy as np # Negative values for x and y x = np.array([-3, -4, -5]) y = np.array([4, 3, 12]) # Applying hypot to each pair (x, y) result = np.hypot(x, y) print(result)
This will produce the following result −
[ 5. 5. 13.]