
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
Numpy in1d() Function
The Numpy in1d() function tests whether each element of a 1D array is also present in a second array. It returns a Boolean array of the same shape as the input array, where each value indicates whether the corresponding element is found in the second array or not.
This function is particularly useful for performing membership checks or comparisons between arrays. It can handle arrays of any numeric or non-numeric data types, including strings and objects.
Syntax
Following is the syntax of the Numpy in1d() function −
numpy.in1d(ar1, ar2, assume_unique=False, invert=False)
Parameters
Following are the parameters of the Numpy in1d() function −
- ar1: The input array whose elements are to be checked.
- ar2: The array against which membership is tested.
- assume_unique (optional): If True, the input arrays are assumed to be unique, which can speed up the calculation. Default is False.
- invert (optional): If True, the Boolean values in the output array are inverted (True becomes False, and vice versa). Default is False.
Return Type
This function returns a 1D Boolean array of the same shape as ar1, where each value indicates whether the corresponding element in ar1 is found in ar2.
Example
Following is a basic example of checking membership of elements in a 1D array using the Numpy in1d() function −
import numpy as np array1 = np.array([10, 20, 30, 40, 50]) array2 = np.array([30, 40, 70]) result = np.in1d(array1, array2) print("Boolean Array:", result)
Output
Following is the output of the above code −
Boolean Array: [False False True True False]
Example: Usage of invert Parameter
The invert parameter can be used to reverse the Boolean values in the output. If a value is True, it will be converted to False, and if a value is False, it will be converted to True.
In the following example, we have inverted the resultand array by setting invert parameter to True in numpy.in1d() function −
import numpy as np array1 = np.array([10, 20, 30, 40, 50]) array2 = np.array([30, 40, 70]) result = np.in1d(array1, array2, invert=True) print("Inverted Boolean Array:", result)
Output
Following is the output of the above code −
Inverted Boolean Array: [ True True False False True]
Example: With Non-Unique Arrays
When assume_unique is set to True, the calculation assumes that the input arrays contain unique elements. This can improve performance when the arrays are large and contain duplicates −
import numpy as np array1 = np.array([10, 20, 20, 40, 50]) array2 = np.array([20, 40, 70]) result = np.in1d(array1, array2, assume_unique=True) print("Boolean Array:", result)
Output
Following is the output of the above code −
Boolean Array: [False True True True False]
Example: Checking Membership with Strings
The in1d() function can also be used with string arrays. In the following example, we have checked whether certain strings of array1 are present in array2 or not −
import numpy as np array1 = np.array(["apple", "banana", "cherry"]) array2 = np.array(["banana", "grape"]) result = np.in1d(array1, array2) print("Boolean Array:", result)
Output
Following is the output of the above code −
Boolean Array: [False True False]
Example: Multi-dimensional Arrays in 'in1d()'
The numpy.in1d() function is designed to work with flattened arrays. When applied to multi-dimensional arrays, the input array is first flattened, and then the function checks for the presence of elements in the specified values −
import numpy as np array1 = np.array([[1, 2], [3, 4]]) array2 = np.array([2, 3]) result = np.in1d(array1, array2) print("Boolean Array:", result)
Output
Following is the output of the above code −
Boolean Array: [False True True False]