
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
Numpy repeat() Function
The Numpy repeat() function is used to repeat elements of an array along a specified axis. This function is very flexible and defined in numpy module. This function either repeats elements by their number of repetitions or a single value for the repetitions of all elements.
The numpy.repeat() function repeats the elements of an array along a specified axis. If the axis is not provided, the array is flattened before repetition. This function is commonly used for data expansion, reshaping arrays, or preparing data for operations that require repeated elements.
Syntax
Following is the syntax of the Numpy repeat() function −
numpy.repeat(array, repeats, axis=None)
Parameters
Following are the parameters of the Numpy repeat() function −
- array - Input array whose elements are to be repeated.
- repeats - Number of repetitions for each element. It can be an integer or an array of integers.
- axis (optional) - The axis along which to repeat elements. If None, the array is flattened before repetition.
Return Values
This function returns a new Numpy array with repeated elements.
Example
Following is a basic example to repeat each element of a 1D NumPy array using Numpy repeat() function −
import numpy as np my_Array = np.array([11, 22, 33, 44]) New_Array = np.repeat(my_Array, 3) print("Original Array:", my_Array) print("Repeated Array:", New_Array)
Output
Original Array: [11 22 33 44] Repeated Array: [11 11 11 22 22 22 33 33 33 44 44 44]
Example - Repeating Along a Specific Axis
In numpy.repeat() function, we can use the axis parameter to repeat elements along a specific axis.
In the following example, elements of a 2D array are repeated along rows by specifying axis parameter to 0 in numpy.repeat() function −
import numpy as np my_Array = np.array([[10, 20], [30, 40]]) New_Array = np.repeat(my_Array, 2, axis=0) print("Original Array:\n", my_Array) print("Repeated Array:\n", New_Array)
Output
Original Array: [[10 20] [30 40]] Repeated Array: [[10 20] [10 20] [30 40] [30 40]]
In the following example, elements of a 2D array are repeated along columns by specifying axis parameter to 1 in numpy.repeat() function −
import numpy as np arr = np.array([[1, 2], [3, 4]]) new_arr = np.repeat(arr, 2, axis=1) print("Original Array:\\n", arr) print("Repeated Array:\\n", new_arr)
Output
Original Array: [[1 2] [3 4]] Repeated Array: [[1 1 2 2] [3 3 4 4]]
Example - Using Array for Repeats
We can specify the number of repetitions for each element using an array. Each element will be repeated the number of times specified in the corresponding position in the repeats array −
import numpy as np arr = np.array([10, 20, 30]) new_arr = np.repeat(arr, [1, 2, 3]) print("Original Array:", arr) print("Repeated Array:", new_arr)
Output
Original Array: [10 20 30] Repeated Array: [10 20 20 30 30 30]
Example - Repeating with Flattening
If the axis parameter is not specified in numpy.repeat() function, the array is flattened before repetition −
import numpy as np arr = np.array([[1, 2], [3, 4]]) new_arr = np.repeat(arr, 3) print("Original Array:\\n", arr) print("Repeated Array:", new_arr)
Output
Original Array: [[1 2] [3 4]] Repeated Array: [1 1 1 2 2 2 3 3 3 4 4 4]
Example - Combining Axis and Repeats
We can combine axis and repeats for customized repetition of elements along a specific axis −
import numpy as np arr = np.array([[1, 2], [3, 4]]) new_arr = np.repeat(arr, [1, 2], axis=0) print("Original Array:\\n", arr) print("Repeated Array:\\n", new_arr)
Output
Original Array: [[1 2] [3 4]] Repeated Array: [[1 2] [3 4] [3 4]]