Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

軌道力学とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 自然科学 > 物理学 > 力学 > 軌道力学の意味・解説 

軌道力学

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/11/18 00:00 UTC 版)

地球の周りを回る衛星は、接線速度と内向きの加速度を持つ。

軌道力学(きどうりきがく)は、弾道学天体力学の応用で、ロケット宇宙船軌道に関する現実的な問題を解決するための学問である。これらの物体の軌道は、ニュートン力学万有引力から計算することができる。軌道力学は、宇宙探査ミッションの設計や制御の基本原理である。天体力学は、重力の下での、軌道力学よりも広範な領域を扱い、宇宙船も恒星系惑星衛星彗星等を含めた天体も、どちらも対象となる。軌道力学は、軌道マヌーバ、軌道平面の変更、惑星間移動も含めた宇宙船の軌道に対象を絞っており、ミッションの計画者が宇宙機の推進を予測するために用いられる。一般相対性理論は、ニュートンの法則より正確に軌道を計算し、高い精確さが必要な場面や太陽近傍等の重力が非常に強い環境では必須である。

歴史

20世紀に宇宙飛行が実現するまで、軌道力学と天体力学の間には、ほとんど差異がなかった。時間の関数として位置を決定するケプラーの問題を解くために用いるような基本技術は、どちらの学問領域でも同じだった。さらに、この学問分野の歴史はほぼ共有していた。

ヨハネス・ケプラーは、高い正確性で惑星の軌道のモデル化に成功した最初の人物であり、1605年にケプラーの法則を発表した。アイザック・ニュートンは、天体の運動のより一般的な法則を1687年の著書『自然哲学の数学的諸原理』の中で発表した。

実用的な技術

経験則

以下の経験則は、標準的な前提の下で天体力学で近似できる状況にとって有用である。議論されている特定の例は、惑星の周囲を公転する衛星であるが、この経験則は恒星の周囲の小天体のような他の状況にも適用することができる。

  • ニュートンの法則から数学的に導くことができるケプラーの法則は、非重力的な力がなく重力を及ぼし合っている2つの天体か、太陽のような巨大質量の天体による重力が他の力に卓越していると近似できる場合にのみ精確である。
    • 軌道は楕円形で、楕円の焦点の1つに重い天体がくる。この特別な場合が、惑星が中心に来る円形軌道(円は、離心率が0の楕円である)と惑星が焦点に来る放物線軌道(離心率がちょうど1で、無限に長い楕円とみなせる)である。
    • 惑星から衛星に引いた直線は、軌道上の位置に関わらず、同じ時間に同じ面積を掃く。
    • 衛星の軌道周期の2乗は、惑星からの平均距離の3乗に比例する。
  • 推力がなければ、衛星の軌道の高さと形は変化せず、不動の恒星に対して同じ角度を保つ。
  • 低軌道(または楕円軌道の近点付近)の衛星は、重力がより強く作用するため、惑星の表面に対して、高軌道(または楕円軌道の遠点付近)の衛星よりも速く運動する。
  • 衛星の軌道上の一点で推力が働いた場合、その衛星は、軌道上の同じ点に戻ってくる。そのため、1つの円軌道から別の軌道に遷移させる場合には、少なくとも2度推力を働かせる必要がある。
  • 円軌道において、衛星の速度を遅くする方向に推力を働かせると、その点から180度の地点に近点を持つ楕円軌道となる。衛星の速度を速くする方向に推力を働かせると、その点から180度の地点に遠点を持つ楕円軌道となる。

軌道力学の法則の結果は、時として直観と相容れないことがある。例えば、同じ円軌道上の2機の宇宙船がドッキングしようとする場合、その位置が非常に接近していない時に、後ろの宇宙船は速度を速めるために単純にエンジンを吹かすことはできない。そうすると軌道の形が変化し、ターゲットと出会うことができない。ドッキングするための1つの方法は、速度を下げるために逆向きにエンジンの噴射を行い、その後、低い円軌道に戻すために再度噴射を行う。低軌道は高軌道よりも速度が速いため、後ろの宇宙船は追いつくことが出来る。3度目の噴射で、先行する宇宙船の軌道と交わり、後ろから接近できるような楕円の軌道に移行する。

標準的な前提が適用できないようなレベルであれば、実際の軌道は計算したものからずれることになる。例えば、大気の抗力は、地球軌道にある物体について複雑化要因になり得る。これらの経験則は、連星系等の同程度の質量の2つかそれ以上の物体に適用する際には、不正確になる。惑星のような大きな物体にとっては、古典力学と一般相対性理論の差異も重要になる。

天体力学の法則

天体力学の基本法則は、ニュートンの万有引力の法則とニュートンの運動の法則であり、ニュートンの開発した微分積分学がその計算のための重要な数学的ツールになる。

ケプラーの法則は、周回する天体が中心の天体からの重力のみを受けていると見なせる場合には、ニュートンの法則から導くことができる。推力が働く場合、ニュートンの法則は適用できるが、ケプラーの法則は成り立たなくなる。推力が止まると、結果として軌道は変わるが、再びケプラーの法則が適用できるようになる。ケプラーの3法則は、次のとおりである。

  1. 全ての惑星の軌道は、太陽を1つの焦点とした楕円である。
  2. 惑星と太陽を結ぶ直線は、等しい時間で等しい面積を掃く。
  3. 惑星の軌道周期の2乗は、軌道長半径の3乗と比例する。

脱出速度

脱出速度の公式は、以下のように簡単に導くことができる。全ての宇宙船の単位質量当たりのエネルギーは、単位質量当たりの位置エネルギーと単位質量当たりの運動エネルギーという2つの成分から成り立っている。単位質量当たりの位置エネルギーは、惑星の質量Mと関係があり、次の式で与えられる。

一覧
  • カテゴリ

  • 軌道 (力学)

    出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/13 13:34 UTC 版)

    2つの異なる質量の物体が、同じ重心の周りの軌道を回っている

    軌道(きどう、orbit)とは力学において、ある物体が重力などの向心力の影響を受けて他の物体の周囲を運動する経路を指す。

    歴史

    物体の軌道はヨハネス・ケプラーによって最初に数学的に解析された。ケプラーはこの研究成果を有名な惑星運動の法則(ケプラーの法則)として定式化した。彼は、我々の太陽系の惑星の軌道が、それまで考えられていたような(または周転円)ではなく楕円であることを発見した。

    アイザック・ニュートンは、ケプラーの法則がニュートンの万有引力の理論から導かれること、また一般に万有引力を受けて運動する物体の軌道が円錐曲線になることを証明した。ニュートンはまた、二つの物体は両者の共通重心の周りにそれぞれの質量に反比例する半径の軌道を描いて回ることを示した。ここで片方の物体がもう片方に比べて非常に重い場合には、便利な近似として、二体の重心は重い方の物体の中心にほぼ一致すると見なすことができる。

    惑星軌道

    惑星系の中で、惑星・小惑星彗星スペースデブリなどは惑星系の中心星の周りを楕円軌道を描いて公転する。この軌道を惑星軌道と言う。放物線軌道または双曲線軌道を持って中心星を公転する彗星は、中心星に重力的に束縛されておらず、その星の惑星系の一部とは考えない。今日まで、我々の太陽系で明らかに双曲線軌道を持つような彗星は観測されていない。惑星系の中で惑星の1つに重力的に束縛されている天体はその惑星の衛星と呼ばれ、自然の衛星であれ人工衛星であれ、その惑星の周りを公転する。

    惑星同士に相互に働く重力摂動によって、我々の太陽系の惑星軌道の離心率は時間と共に変化する。冥王星水星は最も離心率の大きな軌道を公転している。現在は火星がそれに次ぐ大きさの離心率を持っており、一方で離心率が最も小さいのは金星海王星の軌道である。

    2つの天体が互いの周りを回っている時、二体の距離が最も近くなる点を近点 (periapsis)、最も遠くなる点を遠点(apoapsis) と呼ぶ。

    2つの天体が楕円軌道を描いて互いに回っている場合、系の重心は両方の軌道の焦点の1つに位置する。もう一方の焦点には何も存在しない。惑星が近点に近づくと惑星の速度は増加する。惑星が遠点に近づくと速度は減少する。

    軌道運動の理解

    惑星(例えば地球)の周りの軌道運動を説明するモデルとしては、よく用いられる大砲のモデルが有用である。地球上の非常に高い山の山頂に大砲が据え付けられているとし、この大砲が砲弾を水平に撃つことを考える。ここで大砲のある山は非常に高く、大砲がある山頂は地球の大気圏よりも高いために砲弾に作用する大気の抵抗は無視できると仮定する。

    • 大砲が非常に遅い初速で砲弾を発射した場合、砲弾の軌跡は下方向に曲がって地面に達する(図中A)。
    • 砲弾の初速を大きくしていくと、砲弾は大砲からより遠くへ着弾するようになる。ここで、砲弾の軌跡と同様に、砲弾が着弾する地面も遠くに行くほど下方向にカーブしていることに注意する。この時の砲弾の軌跡は、大砲から遠い方の焦点に地球の中心があるような楕円である(図中A→C)。
    • 砲弾の初速が重力を脱するのに十分な場合には、砲弾の軌跡と地面とが同じ曲率となり、砲弾は地球を一周する円軌道に乗ることになる(図中D)。
    • 初速をもっと大きくすると、砲弾の軌道は大砲から近い方の焦点に地球の中心があるような楕円軌道となる(図中E,F)。
    • さらに初速を上げて脱出速度と呼ばれる値に達すると、大砲から遠い方の焦点までの距離が無限遠となり、砲弾の軌道は楕円から放物線に変わる。すなわち砲弾は地球に戻らなくなる。

    ニュートンの運動の法則

    相互に万有引力のみで影響を及ぼしあう2つの物体だけからなる系では、二体の軌道はニュートン運動の法則万有引力の法則を用いて厳密に計算することができる。力学ではこのような条件で二つの物体の運動を解く問題を二体問題と呼ぶ。大ざっぱには、片方の物体が受ける力はその物体の質量と加速度の積になる。二体の間に働く万有引力の大きさはそれぞれの物体の質量に比例し、二体の距離の2乗に反比例する。

    計算を行なう際には、質量が大きい方の物体の中心を原点とする座標系をとると便利である。この場合には、質量が小さい方の物体が大きい方の物体の周囲を軌道運動すると考える。

    物体 A と物体 B が相対的に静止している場合、A と B の距離が遠いほど両方の物体は大きなエネルギーを持っている。なぜなら静止状態での二体の距離が遠いほど、より長い距離を落下することができるからである。このように、物体間の距離に依存するような力を及ぼし合う物体同士が、その位置に応じて持つエネルギーをポテンシャルエネルギーと呼ぶ。

    二体問題では物体の軌道はある平面内の曲線になる。この時、物体の軌道は開いた軌道(片方の物体がもう片方の物体に対して二度と帰ってこない軌道)になる場合と閉じた軌道(物体が帰ってくる軌道)になる場合があり、どちらになるかは系の運動エネルギーとポテンシャルエネルギーの総和の値によって決まる。開いた軌道の場合、軌道上の任意の位置での物体の速度はその位置での脱出速度に等しいかそれより大きい。閉じた軌道の場合には物体の速度は常に各位置での脱出速度より小さい。

    自由落下する物体の軌跡は常に円錐曲線になる。

    開いた軌道の形は双曲線(物体の速度が脱出速度にちょうど等しい場合には放物線)である。この場合、二つの物体は互いにしばらく接近し、最接近の前後で互いの周りを大きく回り込んで再び離れ、二度と帰ってこない。太陽に対して十分に大きな力学的エネルギーを持つ彗星がたまたま太陽に接近するような場合にはこのような軌道をとる。

    閉じた軌道の形は楕円(速度がある特定の値をとる場合には円)である。地球の周りを軌道運動する物体が地球に最も近づく点を近地点 (perigee) と呼ぶ。地球以外の天体の周りを公転する一般の場合には近点 (periapsis / apofocus / apocentron) と呼ぶ。これに対して地球から最も遠ざかる点を遠地点 (apogee) または一般に遠点 (apoapsis / apofocus / apocentron) と呼ぶ。近点から遠点に引いた直線を line-of-apsides と呼ぶ。これは楕円軌道の長軸であり、軌道の差し渡しが最も長い位置になる。

    閉じた軌道を持つ物体は一定の周期で軌道上を運動し続ける。この運動はケプラーの法則によって経験的に記述され、数学的にはニュートンの法則から導かれるものである。これらの法則は以下のように定式化される。

    1. 太陽の周りを公転する惑星の軌道は楕円であり、その楕円の焦点の1つに太陽が位置する。従って軌道は軌道面と呼ばれる平面上にある。軌道上で引力を及ぼす天体に最も近い点が近点であり、最も遠い点が遠点である。特定の天体を回る軌道については以下のようなそれぞれの用語がある:太陽を公転する天体の場合は近日点 (perihelion) と遠日点 (aphelion)、地球を公転する天体の場合は近地点 (perigee) と遠地点 (apogee)、月を公転する天体の場合は近月点 (perilune / periselene) と遠月点 (apolune / aposelene) と呼ぶ。太陽以外の恒星を公転する天体の場合は近星点 (periastron) と遠星点 (apastron) と呼ぶ。
    2. 惑星がある一定時間軌道上を運動する時、太陽と惑星を結ぶ線分は軌道面上の一定面積を掃く。この面積速度は惑星が軌道周期内でどの位置にあるかによらず常に一定である。このことは、近日点の近くでは遠日点の近くよりも惑星は速く動くことを意味する。この法則は通常、面積速度一定の法則と呼ばれる。
    3. 各惑星について、その軌道長半径の3乗と軌道周期の2乗との比は全ての惑星で同じ定数値をとる。

    4つ以上の物体からなる系では、ラグランジュ点のような特殊な場合を除いて運動方程式を解く方法は知られていない。二体問題の解は1687年にニュートンによって『プリンキピア』の中で発表されている。1912年にはフィンランドのK.F.スンドマンが三体問題を解くための無限級数を導いたが、この方法は非常に収束が遅いためにほとんど使われていない。

    天体の軌道の厳密解を得る代わりに、任意の精度で近似解を得ることもできる。このような近似には二つの形式がある。

    1つの形式は、純粋な楕円運動を基本として、これに複数天体からの重力の影響を表す摂動項を付け加えるものである。これは天体の位置を計算するのに便利な方法である。月や惑星、その他の太陽系天体の運動方程式は高い精度で得られており、天測航法に使うための天体暦を編纂するためにこの方法が用いられている。

    科学計算や宇宙探査計画のための目的には、微分方程式の形式が使われる。ニュートンの法則によれば、全ての力の合計は質量加速度の積で表される (F = ma)。従って、加速度を位置の関数として表すことができる。この形式を使うと摂動項をずっと簡単に記述できる。初期状態での位置と速度から未来の位置と速度を予言する計算は微分方程式初期値問題を解くことに対応する。すなわち、初期値から時刻が少し後の天体の位置と速度を数値的に計算し、これを繰り返すことで解を得る。しかしこの方法では、計算機が持つ演算精度の限界によって微小な計算誤差が生じるため、数値積分の方法によっては誤差が累積し、解の精度も制限される。

    これと同様の微分方程式を解く方法によって、多体問題と呼ばれるような非常に多数の天体からなる系のシミュレーションも行なわれている。実際には全ての二体間に働く力を直接計算する直接N体計算と呼ばれる手法や、天体を重心間の二体問題として階層的に集合化して計算する方法などがある。このような方法で銀河星団、その他の大規模な天体のシミュレーションが行なわれている。

    軌道運動の解析

    常にある固定点に向かう力の影響の下で運動する物体の運動を解析する場合には、力の中心を原点とする極座標を使うのが便利である。このような座標系では、加速度の動径方向成分と方位角方向成分はそれぞれ以下のようになる。

    近点移動による軌道の変化。近点長軸が回転している。

    近地点引数の回転

    近地点引数もまた地球の扁平性により回転する。[1]

    地球周回軌道

    地球の周りを公転する軌道(地球周回軌道)には以下のようなものがある。

    重力のスケーリング

    万有引力定数 G は以下の通りである。

    • 6.6742 × 10−11 N·m2/kg2
    • 6.6742 × 10−11 m3/(kg·s2)
    • 6.6742 × 10−11(kg/m3)−1s−2.

    よってこの定数は (密度)−1 × (時間)−2 の次元を持つ。このことから次の性質を持つ。

    軌道運動をする天体について、距離のスケールを変更しても時間のスケールは変化しない(天体の密度を変えずに大きさを変える場合も含む)。例えば距離を半分にすると、質量は 1/8、重力は 1/16 になるため、重力加速度は 1/2 になる。従って軌道周期は元の場合と同じままである。同様に、物体を塔から落下させる場合、物体が地面に達するまでの時間は地球と塔の縮尺をどのようにとっても同じになる。

    また、全ての天体の密度を4倍にすると、軌道の形は同じだが軌道運動の速度は2倍になる。

    全ての天体の密度を4倍にして長さのスケールを半分にすると、軌道の形は同じで軌道速度も元と同じになる。

    ある物体が半径 r で平均密度 σ の球形の物体の周囲を軌道長半径 a、公転周期 T の楕円軌道を描いて回る時、上記の性質は以下の式に表される。


    軌道力学

    出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/12/16 01:29 UTC 版)

    準天頂衛星」の記事における「軌道力学」の解説

    同じ対地同期軌道衛星で、離心率軌道傾斜角とも0の静止軌道衛星は、地表から静止して見えるため、衛星サービス供に適している。しかし、衛星位置高緯度地域ほど地平線近づき地形建造物遮蔽されるリスクが高まる。一方、高い軌道傾斜角を持つ衛星は、地表から見て毎日南北に1往復する軌道飛び高緯度地域天頂付近に一定時間滞在できるこのため高緯度飛来する間に衛星サービス提供するのに適する。 ただし南北往復といっても、同経度ではなく東西振れ地表から見て8の字軌道を描く。低緯度では地表衛星追い抜き高緯度では逆となるためで、「8の字衛星」とも呼ばれる

    ※この「軌道力学」の解説は、「準天頂衛星」の解説の一部です。
    「軌道力学」を含む「準天頂衛星」の記事については、「準天頂衛星」の概要を参照ください。

    ウィキペディア小見出し辞書の「軌道力学」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

    「軌道 (力学)」の例文・使い方・用例・文例

    Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。



    軌道力学と同じ種類の言葉


    英和和英テキスト翻訳>> Weblio翻訳
    英語⇒日本語日本語⇒英語
      

    辞書ショートカット

    すべての辞書の索引

    「軌道力学」の関連用語

    軌道力学のお隣キーワード
    検索ランキング

       

    英語⇒日本語
    日本語⇒英語
       



    軌道力学のページの著作権
    Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

       
    ウィキペディアウィキペディア
    All text is available under the terms of the GNU Free Documentation License.
    この記事は、ウィキペディアの軌道力学 (改訂履歴)、軌道 (力学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
    ウィキペディアウィキペディア
    Text is available under GNU Free Documentation License (GFDL).
    Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの準天頂衛星 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
    Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
     Creative Commons Attribution (CC-BY) 2.0 France.
    この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
    浜島書店 Catch a Wave
    Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
    株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
    Copyright © Benesse Holdings, Inc. All rights reserved.
    研究社研究社
    Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
    日本語WordNet日本語WordNet
    日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
    WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
    日外アソシエーツ株式会社日外アソシエーツ株式会社
    Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
    「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
    EDRDGEDRDG
    This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

    ©2025 GRAS Group, Inc.RSS