Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Roberto Improta

    The authors present a new method for the computation of vibrationally resolved optical spectra of large molecules, including the Duschinsky [Acta Physicochim. URSS 7, 551 (1937)] rotation of the normal modes. The method automatically... more
    The authors present a new method for the computation of vibrationally resolved optical spectra of large molecules, including the Duschinsky [Acta Physicochim. URSS 7, 551 (1937)] rotation of the normal modes. The method automatically selects the relevant vibronic contributions to the spectrum, independent of their frequency, and it is able to provide fully converged spectra with a quite modest computational
    The authors present a new method for the computation of vibrationally resolved optical spectra of large molecules, including the Duschinsky [Acta Physicochim. URSS 7, 551 (1937)] rotation of the normal modes. The method automatically... more
    The authors present a new method for the computation of vibrationally resolved optical spectra of large molecules, including the Duschinsky [Acta Physicochim. URSS 7, 551 (1937)] rotation of the normal modes. The method automatically selects the relevant vibronic contributions to the spectrum, independent of their frequency, and it is able to provide fully converged spectra with a quite modest computational time, both in vacuo and in condensed phase. Starting from the rigorous time-dependent expression they discuss indeed in which limits the spectrum of a molecule embedded in a solvent, described as a polarizable continuum, can be computed in a time-independent formalism, defining both nonequilibrium and equilibrium limits. In these cases the polarizable continuum model provides a suitable description of the solvent field. By computing the absorption spectra of anthracene in gas phase and of coumarin C153 in gas phase and cyclohexane, and the phosphorescence spectrum of the unsubstituted coumarin in ethanol they show that the method is fast and efficient.
    The authors extend their recent method for the computation of vibrationally resolved optical spectra of large molecules, including both the Duschinsky rotation and the effect of finite temperature in the framework of the Franck-Condon... more
    The authors extend their recent method for the computation of vibrationally resolved optical spectra of large molecules, including both the Duschinsky rotation and the effect of finite temperature in the framework of the Franck-Condon (FC) approximation, to deal with the more general case of the Herzberg-Teller (HT) model, where also the linear dependence of the transition dipole moment on the
    UV radiation creates excited states in DNA that lead to mutagenic photoproducts. Photoexcitation of single-stranded DNA can transfer an electron between stacked bases, but the fate of excited states in the double helix has been intensely... more
    UV radiation creates excited states in DNA that lead to mutagenic photoproducts. Photoexcitation of single-stranded DNA can transfer an electron between stacked bases, but the fate of excited states in the double helix has been intensely debated. Here, photoinduced interstrand proton transfer (PT) triggered by intrastrand electron transfer (ET) is detected for the first time by time-resolved vibrational spectroscopy and quantum mechanical calculations. Long-lived excited states are shown to be oppositely charged base pair radical ions. In two of the duplexes, the base pair radical anions are present as tautomers formed by interstrand PT. Charge recombination occurs on the picosecond time scale preventing the accumulation of damaging radicals or mutagenic tautomers.
    By combining quantum-mechanical analysis of small model peptides and statistical surveys of high-resolution protein structures, a systematic conformational dependence of bond lengths in polypeptide backbones has been unveiled which... more
    By combining quantum-mechanical analysis of small model peptides and statistical surveys of high-resolution protein structures, a systematic conformational dependence of bond lengths in polypeptide backbones has been unveiled which involves both the peptide bond (C-O and C-N) and those bonds centred on the C(α) atom. All of these bond lengths indeed display a systematic variability in the ψ angle according to both calculations and surveys of protein structures. The overall agreement between the computed and the statistical data suggests that these trends are essentially driven by local effects. The dependence of C(α) distances on ψ is governed by interactions between the σ system of the C(α) moiety and the C-O π system of the peptide bond. Maximum and minimum values for each bond distance are found for conformations with the specific bond perpendicular and parallel to the adjacent CONH peptide plane, respectively. On the other hand, the variability of the C-O and C-N distances is re...
    The role of intraresidue interactions in determining the conformational behavior of polypeptides is analyzed by means of density functional and post-Hartree-Fock computations on the alanine dipeptide analog and other model compounds. Our... more
    The role of intraresidue interactions in determining the conformational behavior of polypeptides is analyzed by means of density functional and post-Hartree-Fock computations on the alanine dipeptide analog and other model compounds. Our computations show that the accuracy of current density functionals is sufficient for H-bond, electrostatic, inductive, and short-range repulsive interactions, whereas medium-range attractions between electron-rich atoms and/or bonds are underestimated. This leads, in turn, to an underestimation of the stability of helical structures w.r.t. extended or folded conformers involving H-bonds. Those results could pave the route for devising local ad hoc corrections able to significantly improve structural and dynamic predictions for polypeptides issuing from DFT computations.
    The fluorescence properties of the 8-hydroxy-2'-deoxyguanosine (8-oxo-dG) in aqueous solution at pH 6.5 are studied by steady-state spectroscopy and femtosecond fluorescence up-conversion and compared with those of 2'-deoxyguanine... more
    The fluorescence properties of the 8-hydroxy-2'-deoxyguanosine (8-oxo-dG) in aqueous solution at pH 6.5 are studied by steady-state spectroscopy and femtosecond fluorescence up-conversion and compared with those of 2'-deoxyguanine (dG) and 2'-deoxyguanine monophosphate (dGMP). The steady-state fluorescence spectrum of 8-oxo-dG is composed of a broad band that peaks at 356 nm and extends over the entire visible spectral region, and its fluorescence quantum yield is twice that of dG/dGMP. After excitation at 267 nm, the initial fluorescence anisotropy at all wavelengths is lower than 0.1, giving evidence of an ultrafast internal conversion (<100 fs) between the two lowest excited ππ* states (Lb and La). The fluorescence decays of 8-oxo-dG are biexponential with an average lifetime of 0.7 ± 0.1 ps, which is about two times longer than that of dGMP. In contrast with dGMP, only a moderate dynamical shift (∼1400 vs 10 000 cm(-1)) of the fluorescence spectra of 8-oxo-dG is o...
    The physicochemical effects modulating the conformational behavior and the rate of intramolecular dissociative electron transfer in phthalimide-Aibn-peroxide peptides (n = 0-3) have been studied by an integrated density... more
    The physicochemical effects modulating the conformational behavior and the rate of intramolecular dissociative electron transfer in phthalimide-Aibn-peroxide peptides (n = 0-3) have been studied by an integrated density functional/continuum solvent model. We found that three different orientations of the phthalimide ring are possible, labeled Phihel, PhiC7, and PhipII. In the condensed phase, they are very close in energy when the system is neutral and short. When the peptide chain length increases and the system is negatively charged, Phihel becomes instead the most stable conformer. Our calculations confirm that the 3(10)-helix is the most stable secondary structure for the peptide bridge. However, upon charge injection in the phthalimide end of the phthalimide-Aib3-peroxide, the peptide bridge can adopt an alpha-helix conformation as well. The study of the dependence of the frontier orbitals on the length and on the conformation of the peptide bridge (in agreement with experiment...
    We study the absorption and emission electronic spectra in an aqueous solution of N-methyl-6-oxyquinolinium betaine (MQ), an interesting dye characterized by a large change of polarity and H-bond ability between the ground (S0) and the... more
    We study the absorption and emission electronic spectra in an aqueous solution of N-methyl-6-oxyquinolinium betaine (MQ), an interesting dye characterized by a large change of polarity and H-bond ability between the ground (S0) and the excited (S1) states. To that end we compare alternative approaches based either on explicit solvent models and density functional theory (DFT)/molecular-mechanics (MM) calculations or on DFT calculations on clusters models embedded in a polarizable continuum (PCM). In the first approach (ClMD), the spectrum is computed according to the classical Franck-Condon principle, from the dispersion of the time-dependent (TD)-DFT vertical transitions at selected snapshots of molecular dynamics (MD) on the initial state. In the cluster model (Qst) the spectrum is simulated by computing the quantum vibronic structure, estimating the inhomogeneous broadening from state-specific TD-DFT/PCM solvent reorganization energies. While both approaches provide absorption and emission spectral shapes in nice agreement with experiment, the Stokes shift is perfectly reproduced by Qst calculations if S0 and S1 clusters are selected on the grounds of the MD trajectory. Furthermore, Qst spectra better fit the experimental line shape, mostly in absorption. Comparison of the predictions of the two approaches is very instructive: the positions of Qst and ClMD spectra are shifted due to the different solvent models and the ClMD spectra are narrower than the Qst ones, because MD underestimates the width of the vibrational density of states of the high-frequency modes coupled to the electronic transition. On the other hand, both Qst and ClMD approaches highlight that the solvent has multiple and potentially opposite effects on the spectral width, so that the broadening due to solute-solvent vibrations and electrostatic interaction with bulk solvent is (partially) counterbalanced by a narrowing of the contribution due to the solute vibrational modes. Qst analysis evidences a pure quantum broadening effect of the spectra in water due to vibronic progressions along the solute/solvent H-bonds.
    Research Interests:
    The authors present a new method for the computation of vibrationally resolved optical spectra of large molecules, including the Duschinsky rotation of the normal modes and the effect of thermal excitation. The method automatically... more
    The authors present a new method for the computation of vibrationally resolved optical spectra of large molecules, including the Duschinsky rotation of the normal modes and the effect of thermal excitation. The method automatically selects the relevant vibronic contributions to the spectrum, independently of their frequency, and it is able to provide fully converged spectra with moderate computational times, both in vacuo and in solution. By describing the electronic states in the frame of the density functional theory and its time-dependent extension, they computed the room temperature absorption spectra of coumarin C153 and trans-stilbene in cyclohexane and the phosphorescence spectrum of porphyrazine in gas phase, showing that the method is fast and efficient. The comparison with experiment for trans-stilbene and coumarin C153 is very satisfactory, confirming the progress made toward a reliable method for the computation and interpretation for the optical spectra of large molecules.
    Research Interests:
    ABSTRACT Fait Marquant DRECAM 2296
    We present a quantum-mechanical study of the S(N)2 acid-catalyzed solvolysis with methanol of seven simplified duocarmycin SA (DNA alkylating agent) derivatives characterized by spirocyclic systems of increasing complexity, all containing... more
    We present a quantum-mechanical study of the S(N)2 acid-catalyzed solvolysis with methanol of seven simplified duocarmycin SA (DNA alkylating agent) derivatives characterized by spirocyclic systems of increasing complexity, all containing the cyclopropyl/cyclohexadienone substrate. The reaction has been studied at the DFT-PBE0/6-31G(d) level in the gas phase and in methanol solution, using in the latter case the polarizable continuum model (PCM) to describe solvent effects. The results delivered by this computational protocol are in full agreement with the available experimental evidences and are not modified by extension of the basis set or by using a second-order many-body treatment (MP2) in place of DFT. This allows investigation of substituent effects in terms of structure/reactivity relationships and evaluation of the role of stereoelectronic effects. Furthermore, reactivity indices (hardness, electrophilicity) have been computed and shown to correlate well with activation energies. Together with their intrinsic interest, the details of the mechanism of the acid-catalyzed nucleophilic addition to the activated cyclopropane issuing from the present study pave the route for a deeper understanding of the molecular basis for the remarkable profile of the DNA-alkylation by DSA derivatives.
    Research Interests:
    Research Interests:
    In this work the DNA bases and their radical cations are investigated by an hybrid Hartree-Fock/density functional model. The calculated geometries and ionization energies are in good agreement with the available experimental data,... more
    In this work the DNA bases and their radical cations are investigated by an hybrid Hartree-Fock/density functional model. The calculated geometries and ionization energies are in good agreement with the available experimental data, confirming the reliability of this approach for the study of open shell systems. A critical comparison between the electronic and geometric structures of the radical cations and those of the neutral DNA bases, together with an analysis based on the natural bond orbital theory, offer some insights on the fragmentation patterns recorded in the experimental mass spectra as well as a tentative explanation of the different behavior of thymine and cytosine.
    Research Interests:
    ABSTRACT
    Research Interests:
    Research Interests:
    This contribution describes the results of some recent studies concerning the excited state behavior of nucleic acid bases, where solvent and stacking effect are included. Our computational approach is based on PBE0 and TD-PBE0 geometry... more
    This contribution describes the results of some recent studies concerning the excited state behavior of nucleic acid bases, where solvent and stacking effect are included. Our computational approach is based on PBE0 and TD-PBE0 geometry optimizations, while bulk solvent effects are taken into account by the Polarizable Continuum Model, with the possible inclusion of the solvent molecules of the first solvation shell. This approach provides accurate absorption and emission spectra both for pyrimidine and purine bases and is able to explain solvent effect on the excited state lifetimes of uracil-like molecules. Solvent indeed modulates the accessibility of an extra decay channel for the bright excited state, involving an underlying dark state. The effect of base stacking, investigated on 9-methyl-adenine stacked dimers and trimers, on the absorption and emission spectra is also fully reproduced by our calculations. Although light absorption leads to a state (SB) delocalized over different adenine molecules, excited state geometry optimization indicates that afterward it evolves into a state where the excitation is localized on a single base. Analysis of the excited state potential energy surfaces shows that SB can easily decay into the lowest energy excited state (SCT). SCT is a dark excimer produced by inter-monomer charge transfer between two stacked bases.
    Research Interests:
    We report a thorough computational characterization of the low- and room-temperature absorption and emission spectra of a series of oligothiophenes that contain between three and seven thiophene units. Our computational approach is based... more
    We report a thorough computational characterization of the low- and room-temperature absorption and emission spectra of a series of oligothiophenes that contain between three and seven thiophene units. Our computational approach is based on time-dependent (TD) density functional calculations with the CAM-B3LYP functional. The effect of vibrations is included without resorting to any empirical parameters either at a fully quantum level or with a hybrid quantum-classical protocol. This latter approach is introduced to describe the relevant broadening effects in absorption at room temperature and is based on the partition of the vibrational modes into two sets: the inter-ring torsions treated at the anharmonic level in a classical way and the remaining modes described at the quantum level. The contribution of the quantum modes to the spectrum is computed by using a harmonic approximation, which accounts for Duschinsky mixing and changes in the vibrational frequencies associated with the electronic transition; a path-integral TD approach is adopted to account for the effect of temperature. The spectra simulated at low temperatures are in very good agreement with their experimental counterparts, which indicates that our calculations can quantitatively reproduce the effect of chain lengthening on the position and the shape of the spectra. Good agreement is also obtained at room temperature, for which we show that the classical description of the broadening, owing to the inter-ring torsions, reproduces the loss of the vibronic structure observed in the experiment and introduces only a slight overestimation of the spectral width.
    Research Interests:
    The relative position of La and Lb ππ* electronic states in purine nucleobases is a much debated topic, since it can strongly affect our understanding of their photoexcited dynamics. To assess this point, we calculated the absorption and... more
    The relative position of La and Lb ππ* electronic states in purine nucleobases is a much debated topic, since it can strongly affect our understanding of their photoexcited dynamics. To assess this point, we calculated the absorption and magnetic circular dichroism (MCD) spectra of adenine, guanine, and their nucleosides in gas-phase and aqueous solution, exploiting recent developments in MCD computational technology within time-dependent density functional theory. MCD spectroscopy allows us to resolve the intense S0→ La transition from the weak S0→ Lb transition. The spectra obtained in water solution, by using B3LYP and CAM-B3LYP functionals and describing solvent effect by cluster models and by the polarizable continuum model (PCM), are in very good agreement with the experimental counterparts, thus providing direct and unambiguous evidence that the energy ordering predicted by TD-DFT, La < Lb, is the correct one.
    Research Interests:
    Recently, optimal control of a photoisomerization reaction in the liquid phase was demonstrated for the first time on the system... more
    Recently, optimal control of a photoisomerization reaction in the liquid phase was demonstrated for the first time on the system 3,3(')-diethyl-2,2(')-thiacyanine (NK88). Additionally, the class of cyanines to which the molecule NK88 belongs draws a lot of attention in different recent theoretical publications. Therefore, a better understanding of the molecular dynamics of this molecular system is of special interest. Experiments using the femtosecond pump-supercontinuum probe technique with an excitation wavelength of 400 nm and a spectral range from 370 to 620 nm for the probe beam have been performed. In order to analyze the dynamics properly the time window has been chosen to comprise the characteristic times of the contributing processes, additionally we have employed two solvents, methanol and ethylene glycol, and have conducted anisotropy measurements. The spectroscopic data have been assigned to different molecular states with the help of density functional theory and second-order Moller-Plesset perturbation theory calculations. The analysis of the data has revealed in the most likely model that three different isomers exist with different lifetimes. On the basis of experimental and theoretical data, a conclusive scheme of the isomerization reaction is presented.
    Research Interests:
    Recently, optimal control of a photoisomerization reaction in the liquid phase was demonstrated for the first time on the system... more
    Recently, optimal control of a photoisomerization reaction in the liquid phase was demonstrated for the first time on the system 3,3(')-diethyl-2,2(')-thiacyanine (NK88). Additionally, the class of cyanines to which the molecule NK88 belongs draws a lot of attention in different recent theoretical publications. Therefore, a better understanding of the molecular dynamics of this molecular system is of special interest. Experiments using the femtosecond pump-supercontinuum probe technique with an excitation wavelength of 400 nm and a spectral range from 370 to 620 nm for the probe beam have been performed. In order to analyze the dynamics properly the time window has been chosen to comprise the characteristic times of the contributing processes, additionally we have employed two solvents, methanol and ethylene glycol, and have conducted anisotropy measurements. The spectroscopic data have been assigned to different molecular states with the help of density functional theory and second-order Moller-Plesset perturbation theory calculations. The analysis of the data has revealed in the most likely model that three different isomers exist with different lifetimes. On the basis of experimental and theoretical data, a conclusive scheme of the isomerization reaction is presented.
    Research Interests:
    Research Interests:
    ABSTRACT The absorption and emission spectra of dithiophene have been computed in different environments (gas phase, apolar, and polar solvents) and at different temperatures, including Duschinsky, temperature and solvent effects at full... more
    ABSTRACT The absorption and emission spectra of dithiophene have been computed in different environments (gas phase, apolar, and polar solvents) and at different temperatures, including Duschinsky, temperature and solvent effects at full ab initio level, and considering the anharmonicity of the double well potential associated with the inter-ring torsional mode. The computed spectra are in very good agreement with the experimental ones, allowing for a complete assignment of the main vibrational features. Five different density functionals (BLYP, B3LYP, CAM-B3LYP, BHLYP, and PBE0) have been tested, and CAM-B3LYP and PBE0 are the most accurate.
    Research Interests:
    During the early evolution of life, 8-oxo-7,8-dihydro-2'-deoxyguanosine (O) may have functioned as a proto-flavin capable of repairing cyclobutane pyrimidine dimers in DNA or RNA by photoinduced electron transfer using longer... more
    During the early evolution of life, 8-oxo-7,8-dihydro-2'-deoxyguanosine (O) may have functioned as a proto-flavin capable of repairing cyclobutane pyrimidine dimers in DNA or RNA by photoinduced electron transfer using longer wavelength UVB radiation. To investigate the ability of O to act as an excited-state electron donor, a dinucleotide mimic of the FADH2 cofactor containing O at the 5'-end and 2'-deoxyadenosine at the 3'-end was studied by femtosecond transient absorption spectroscopy in aqueous solution. Following excitation with a UV pulse, a broadband mid-IR pulse probed vibrational modes of ground-state and electronically excited molecules in the double-bond stretching region. Global analysis of time- and frequency-resolved transient absorption data coupled with ab initio quantum mechanical calculations reveal vibrational marker bands of nucleobase radical ions formed by electron transfer from O to 2'-deoxyadenosine. The quantum yield of charge separation...
    We present a computational study of the magnetic circular dichroism (MCD) spectra in the 200-300 nm wavelength region of purine and its derivative hypoxanthine, as well as of the pyrimidine bases of nuclear acids uracil, thymine, and... more
    We present a computational study of the magnetic circular dichroism (MCD) spectra in the 200-300 nm wavelength region of purine and its derivative hypoxanthine, as well as of the pyrimidine bases of nuclear acids uracil, thymine, and cytosine, using the B3LYP and CAM-B3LYP functionals. Solvent effects are investigated within the polarizable continuum model and by inclusion of explicit water molecules. In general, the computed spectra are found to be in good agreement with the experimental ones, apart from some overall blue shifts. Both the pseudo-A term shape of the MCD spectra of the purines and the B term shape of the spectra of pyrimidine bases are reproduced. Our calculations also correctly reproduce the reversed phase of the MCD bands in purine compared to that of its derivatives present in nucleic acids. Solvent effects are sizable and system specific, but they do not in general alter the qualitative shape of the spectra. The bands are dominated by the bright π → π* transition...
    We investigate at TD-DFT/PBE0/6-31+G(d,p) level of theory, the two lowest Bu states of the trans isomer of stilbene and two stiff-stilbenes, whose phenyl rings are blocked in the molecular plane by alkylic bridges, and whose two first Bu... more
    We investigate at TD-DFT/PBE0/6-31+G(d,p) level of theory, the two lowest Bu states of the trans isomer of stilbene and two stiff-stilbenes, whose phenyl rings are blocked in the molecular plane by alkylic bridges, and whose two first Bu bands have been observed. At the Franck–Condon point, computations have been performed both in gas and in condensed phase by PCM method,
    Femtosecond time-resolved IR spectroscopy is used to investigate the excited-state dynamics of a dinucleotide containing an 8-oxoguanine anion at the... more
    Femtosecond time-resolved IR spectroscopy is used to investigate the excited-state dynamics of a dinucleotide containing an 8-oxoguanine anion at the 5'-end and neutral adenine at the 3'-end. UV excitation of the dinucleotide transfers an electron from deprotonated 8-oxoguanine to its π-stacked neighbor adenine in less than 1 ps, generating a neutral 8-oxoguanine radical and an adenine radical anion. These species are identified by the excellent agreement between the experimental and calculated IR difference spectra. The quantum efficiency of this ultrafast charge shift reaction approaches unity. Back electron transfer from the adenine radical anion to the 8-oxguanine neutral radical occurs in 9 ps, or approximately 6 times faster than between the adenine radical anion and the 8-oxoguanine radical cation (Zhang, Y. et al. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 11612-11617). The large asymmetry in forward and back electron transfer rates is fully rationalized by semiclassical nonadiabatic electron transfer theory. Forward electron transfer is ultrafast because the driving force is nearly equal to the reorganization energy, which is estimated to lie between 1 and 2 eV. Back electron transfer is highly exergonic and takes place much more slowly in the Marcus inverted region.

    And 89 more