Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Trypanosoma cruzi is the causative agent of Chagas disease. There are only two approved treatments, both of them unsuitable for the chronic phase, therefore the development of new drugs is a priority. Trypanosoma cruzi arginine kinase... more
Trypanosoma cruzi is the causative agent of Chagas disease. There are only two approved treatments, both of them unsuitable for the chronic phase, therefore the development of new drugs is a priority. Trypanosoma cruzi arginine kinase (TcAK) is a promising drug target since it is absent in humans and it is involved in cellular stress responses. In a previous study, possible TcAK inhibitors were identified through computer simulations resulting the best compounds capsaicin and cyanidin derivatives. Here, we evaluate the effect of capsaicin on TcAK activity and its trypanocidal effect. Although capsaicin produced a weak enzyme inhibition, it had a strong trypanocidal effect on epimastigotes and trypomastigotes (IC50 = 6.26 µM and 0.26 µM, respectively) being 20-fold more active on trypomastigotes than mammalian cells. Capsaicin was also active on the intracellular cycle reducing by half the burst of trypomastigotes at approximately 2 µM. Considering the difference between the concentr...
ABSTRACTTrypanosoma cruzi is the causative agent of Chagas disease, considered within the list of twenty neglected diseases according to the World Health Organization. There are only two therapeutic drugs for Chagas disease, both of them... more
ABSTRACTTrypanosoma cruzi is the causative agent of Chagas disease, considered within the list of twenty neglected diseases according to the World Health Organization. There are only two therapeutic drugs for Chagas disease, both of them unsuitable for the chronic phase, therefore the development of new drugs is a priority.T. cruzi arginine kinase (TcAK) is a promising drug target since it is absent in humans and it is involved in cellular stress responses. In a previous study from our laboratory, possible TcAK inhibitors were identified through computer simulations, resulting in the best-scoring compounds cyanidin derivatives and capsaicin. Considering these results, in this work we evaluate the effect of capsaicin on TcAK activity and its trypanocidal effect. Although capsaicin produced a weak inhibition on the recombinant TcAK activity (IC50 ≈ 800 µM), it had a strong trypanocidal effect on epimastigotes and trypomastigotes (IC50 = 6.26 µM and 0.26 µM, respectively) being 20-fold...
During three decades, only about 20 new drugs have been developed for malaria, tuberculosis and all neglected tropical diseases (NTDs). This critical situation was reached because NTDs represent only 10% of health research investments;... more
During three decades, only about 20 new drugs have been developed for malaria, tuberculosis and all neglected tropical diseases (NTDs). This critical situation was reached because NTDs represent only 10% of health research investments; however, they comprise about 90% of the global disease burden. Computational simulations applied in virtual screening (VS) strategies are very efficient tools to identify pharmacologically active compounds or new indications for drugs already administered for other diseases. One of the advantages of this approach is the low time-consuming and low-budget first stage, which filters for testing experimentally a group of candidate compounds with high chances of binding to the target and present trypanocidal activity. In this work, we review the most common VS strategies that have been used for the identification of new drugs with special emphasis on those applied to trypanosomiasis and leishmaniasis. Computational simulations based on the selected protein...
Trypanosoma cruzi, the etiological agent of Chagas disease, uses proline as its main carbon source, essential for parasite growth and stage differentiation in epimastigotes and amastigotes. Since proline is involved in many essential... more
Trypanosoma cruzi, the etiological agent of Chagas disease, uses proline as its main carbon source, essential for parasite growth and stage differentiation in epimastigotes and amastigotes. Since proline is involved in many essential biological processes in T. cruzi, its transport and metabolism are interesting drug targets. Four synthetic proline analogues (ITP-1B/1C/1D/1G) were evaluated as inhibitors of proline transport mediated through the T. cruzi proline permease TcAAAP069. The trypanocidal activity of the compounds was also assessed. The compounds ITP-1B and ITP-1G inhibited proline transport mediated through TcAAAP069 permease in a dose-dependent manner. The analogues ITP-1B, -1D and -1G had trypanocidal effect on T. cruzi epimastigotes with IC50 values between 30 and 40μM. However, only ITP-1G trypanocidal activity was related with its inhibitory effect on TcAAAP069 proline transporter. Furthermore, this analogue strongly inhibited the parasite stage differentiation from epimastigote to metacyclic trypomastigote. Finally, compounds ITP-1B and ITP-1G were also able to inhibit the transport mediated by other permeases from the same amino acid permeases family, TcAAAP. It is possible to design synthetic amino acid analogues with trypanocidal activity. The compound ITP-1G is an interesting starting point for new trypanocidal drug design which is also an inhibitor of transport of amino acids and polyamines mediated by permeases from the TcAAAP family, such as proline transporter TcAAAP069 among others. The Trypanosoma cruzi amino acid transporter family TcAAAP constitutes a multiple and promising therapeutic target for the development of new treatments against Chagas disease.
Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic... more
Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic for polyamines. Previous works reported that retinol acetate inhibits Leishmania growth and decreases its intracellular polyamine concentration. The present work describes a combined strategy of drug repositioning by virtual screening followed by in vitro assays to find drugs able to inhibit TcPAT12, the only polyamine transporter described in T. cruzi. After a screening of 3000 FDA-approved drugs, 7 retinoids with medical use were retrieved and used for molecular docking assays with TcPAT12. From the docked molecules, isotretinoin, a well-known drug used for acne treatment, showed the best interaction score with TcPAT12 and was selected for further in vitro studies. Isotretinoin inhibited the polyamine transport, as well as other amino acid transpo...
Trypanosomatid parasites represent a major health issue affecting hundreds of million people worldwide, with clinical treatments that are partially effective and/or very toxic. They are responsible for serious human and plant diseases... more
Trypanosomatid parasites represent a major health issue affecting hundreds of million people worldwide, with clinical treatments that are partially effective and/or very toxic. They are responsible for serious human and plant diseases including Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (Sleeping sickness), Leishmania spp. (Leishmaniasis), and Phytomonas spp. (phytoparasites). Both, animals and trypanosomatids lack the biosynthetic riboflavin (vitamin B2) pathway, the vital precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) cofactors. While metazoans obtain riboflavin from the diet through RFVT/SLC52 transporters, the riboflavin transport mechanisms in trypanosomatids still remain unknown. Here, we show that riboflavin is imported with high affinity in Trypanosoma cruzi, Trypanosoma brucei, Leishmania (Leishmania) mexicana, Crithidia fasciculata and Phytomonas Jma using radiolabeled riboflavin transport assays. The vitamin is incorporated thro...
Benznidazole is the first-line drug used in treating Chagas disease, which is caused by the parasite Trypanosoma cruzi (T. cruzi). However, benznidazole has limited efficacy and several adverse reactions. Pentamidine is an antiprotozoal... more
Benznidazole is the first-line drug used in treating Chagas disease, which is caused by the parasite Trypanosoma cruzi (T. cruzi). However, benznidazole has limited efficacy and several adverse reactions. Pentamidine is an antiprotozoal drug used in the treatment of leishmaniasis and African trypanosomiasis. In T. cruzi, pentamidine blocks the transport of putrescine, a precursor of trypanothione, which constitutes an essential molecule in the resistance of T. cruzi to benznidazole. In the present study, we describe the effect of the combination of benznidazole and pentamidine on isolated parasites, mammalian cells and in mice infected with T. cruzi. In isolated trypomastigotes, we performed a dose-matrix scheme of combinations, where pentamidine antagonized the effect of benznidazole, mainly at concentrations below the EC50 of pentamidine. In T. cruzi-infected mammalian cells, pentamidine reversed the effect of benznidazole (measured by qPCR). In comparison, in infected BALB/c mice, pentamidine failed to get synergy with benznidazole, measured on mice survival, parasitemia and amastigote nest quantification. To further explain the in vitro antagonism, we explored whether pentamidine affects intracellular trypanothione levels, however, pentamidine produced no change in trypanothione concentrations. Finally, the T. cruzi polyamine permease (TcPAT12) was overexpressed in epimastigotes, showing that pentamidine has the same trypanocidal effect, independently of transporter expression levels. These results suggest that, in spite of the high potency in the putrescine transport blockade, TcPAT12 permease is not the main target of pentamidine, and could explain the lack of synergism between pentamidine and benznidazole.
Arginine kinase catalyzes the reversible transphosphorylation between ADP and phosphoarginine which plays a critical role in the maintenance of cellular energy homeostasis. Arginine kinase from the protozoan parasite Trypanosoma cruzi,... more
Arginine kinase catalyzes the reversible transphosphorylation between ADP and phosphoarginine which plays a critical role in the maintenance of cellular energy homeostasis. Arginine kinase from the protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, meets the requirements to be considered as a potential therapeutic target for rational drug design including being absent in its mammalian hosts. In this study a group of polyphenolic compounds was evaluated as potential inhibitors of arginine kinase using molecular docking techniques. Among the analyzed compounds with the lowest free binding energy to the arginine kinase active site (<-6.96kcal/mol), resveratrol was chosen for subsequent assays. Resveratrol inhibits 50% of recombinant arginine kinase activity at 325μM. The trypanocidal effect of resveratrol was evaluated on the T. cruzi trypomastigotes bursting from infected CHO K1 cells, with IC50=77μM. Additionally epimastigotes overexpressing arginine kina...
The mammalian TOR pathway... more
The mammalian TOR pathway ("Target Of Rapamycin") is a regulatory protein network involved in a wide range of processes including cell growth and differentiation, providing a functional switch between anabolic and catabolic cell metabolism. Trypanosoma cruzi, the etiologic agent of Chagas disease, has a complex life cycle with different morphological stages in various hosts. This life cycle implies that parasites have to deal with fluctuations in the extracellular medium that should be detected and counteracted adapting their metabolism. A candidate to be the mediator between the receptors / sensors of the environment and cellular adaptive response is the TOR pathway. In this paper we integrate the bibliographic data of the TOR pathway in trypanosomatids by in silico analysis (computer simulation of biological structures and processes) of the parasite's genome. Possible effectors and processes regulated by this metabolic pathway are also proposed. Given that the information on the mechanisms of signal transduction in trypanosomatids is scarce, we consider the model presented in this work may be a reference for future experimental work.
Adenylate kinases (ADK) are key enzymes involved in cell energy management. Trypanosomatids present the highest number of variants in a single cell in comparison with the rest of the living organisms. In this work, we characterized two... more
Adenylate kinases (ADK) are key enzymes involved in cell energy management. Trypanosomatids present the highest number of variants in a single cell in comparison with the rest of the living organisms. In this work, we characterized two flagellar ADKs from Trypanosoma cruzi, called TcADK1 and TcADK4, which are also located in the cell cytosol. Interestingly, TcADK1 presents a stage-specific expression. This variant was detected in epimastigotes cells, and was completely absent in trypomastigotes and amastigotes, while TcADK4 is present in the major life cycle stages of T. cruzi. Both variants are also regulated, in opposite ways, along the parasite growth curve suggesting that their expression depends on the intra- and extracellular conditions. Both, TcADK1 and TcADK4 present N-terminal extension that could be responsible for their subcellular localization. The presence of ADK variants in the flagellum would be critical for the provision of energy in a process of high ATP consumption...
Trypanosoma cruzi, the etiological agent of Chagas’ disease, is the only eukaryotic cell which lacks the ability to synthesize polyamines de novo. In this work, we describe for the first time the molecular and biochemical properties of a... more
Trypanosoma cruzi, the etiological agent of Chagas’ disease, is the only eukaryotic cell which lacks the ability to synthesize polyamines de novo. In this work, we describe for the first time the molecular and biochemical properties of a high-affinity spermidine transporter from T. cruzi. The transporter gene TcPAT12 was functionally expressed in Xenopus laevis oocytes, showing high levels of spermidine
In this work two cytokines were used in combination with inactivated bacteria (bacterin) to test the bovine conjuctival immune response to the pathogen Moraxella bovis, the causative agent of Infectious bovine keratoconjunctivitis (IBK).... more
In this work two cytokines were used in combination with inactivated bacteria (bacterin) to test the bovine conjuctival immune response to the pathogen Moraxella bovis, the causative agent of Infectious bovine keratoconjunctivitis (IBK). Treatments using the bacterin vaccine combined with interleukin-2 and interferon-α as adjuvants (Group A), the bacterin vaccine only (Group B), and controls without treatment (Group C), were applied by ocular spraying to evaluate the local immune response in the corneal structure of cattle experimentally infected with M. bovis. Six weeks after infection, 14 out of a total of 34 animals presented different corneal lesions; 9 corresponding to the control group C, 4 to the group B and only one to the group A. According to the clinical manifestations, a numeric score was calculated. Control animals presented the highest score value (12 points), followed by group B (7.5 points) and group A (1 point). These results suggest that the addition of cytokines to M. bovis treatments can reduce not only eye injuries caused by IBK but also the number of diseased animals.
Trypanosomatids parasites have complex life cycles which involve a wide diversity of milieus with very different physicochemical properties. Arginine kinase is one of the key enzymes, responsible for the... more
Trypanosomatids parasites have complex life cycles which involve a wide diversity of milieus with very different physicochemical properties. Arginine kinase is one of the key enzymes, responsible for the parasites' metabolic plasticity, which maintains the cell energy homeostasis during environment changes. Arginine kinase catalyzes the reversible phosphorylation between phosphoarginine and ADP. The phosphagen phosphoarginine sustains high levels of cellular activity until metabolic events, such as glycolysis and oxidative phosphorylation, are switched on. In different unicellular and multicellular organisms including trypanosomatids, it was demonstrated that arginine kinase is an important component in resistance mechanisms to different stress factors, such as reactive oxygen species, trypanocidal drugs, pH and starvation. In addition, few arginine kinase inhibitors were identified during the lasts years, some of them with trypanocidal activity, such as polyphenolic compounds. All these unique features, in addition to the fact that arginine kinase is completely absent in mammals, make this pathway a favorable start point for rational drug design for the treatment of human trypanosomamiases.
Trypanosoma cruzi is the etiological agent of Chagas disease, a disease endemic not only in Argentina but also in all of Latin America. T. cruzi presents several metabolic characteristics which are completely absent in its insect vectors... more
Trypanosoma cruzi is the etiological agent of Chagas disease, a disease endemic not only in Argentina but also in all of Latin America. T. cruzi presents several metabolic characteristics which are completely absent in its insect vectors and in mammalian hosts. Some of these differences were acquired after millions of years of adaptation to parasitism, during which this protozoan replaced many biosynthetic routes for transport systems. In the present review, we describe the advances in the knowledge of T. cruzi transport processes and the molecules involved. In particular, we focus on amino acid and polyamine transporters from the AAAP family (Amino Acid/Auxin Permeases), because they seem to be exclusive transporters from trypanosomatids. Taking into account that these permeases are completely absent in mammals, they could be considered as a potential target against Trypanosoma cruzi.
Trypanosomatids are responsible for economically important veterinary affections and severe human diseases. In Africa, Trypanosoma brucei causes sleeping sickness or African trypanosomiasis, while in America, Trypanosoma cruzi is the... more
Trypanosomatids are responsible for economically important veterinary affections and severe human diseases. In Africa, Trypanosoma brucei causes sleeping sickness or African trypanosomiasis, while in America, Trypanosoma cruzi is the etiological agent of Chagas disease. These parasites have complex life cycles which involve a wide variety of environments with very different compositions, physicochemical properties, and availability of metabolites. As the environment changes there is a need to maintain the nucleoside homeostasis, requiring a quick and regulated response. Most of the enzymes required for energy management are phosphotransferases. These enzymes present a nitrogenous group or a phosphate as acceptors, and the most clear examples are arginine kinase, nucleoside diphosphate kinase, and adenylate kinase. Trypanosoma and Leishmania have the largest number of phosphotransferase isoforms ever found in a single cell; some of them are absent in mammals, suggesting that these en...
The mammalian TOR pathway ("Target Of Rapamycin") is a regulatory protein network involved in a wide range of processes including cell growth and differentiation, providing a functional switch between anabolic and catabolic cell... more
The mammalian TOR pathway ("Target Of Rapamycin") is a regulatory protein network involved in a wide range of processes including cell growth and differentiation, providing a functional switch between anabolic and catabolic cell metabolism. Trypanosoma cruzi, the etiologic agent of Chagas disease, has a complex life cycle with different morphological stages in various hosts. This life cycle implies that parasites have to deal with fluctuations in the extracellular medium that should be detected and counteracted adapting their metabolism. A candidate to be the mediator between the receptors / sensors of the environment and cellular adaptive response is the TOR pathway. In this paper we integrate the bibliographic data of the TOR pathway in trypanosomatids by in silico analysis (computer simulation of biological structures and processes) of the parasite's genome. Possible effectors and processes regulated by this metabolic pathway are also proposed. Given that the inform...
Page 1. LA VÍA TOR EN T. CRUZI 221 ARTÍCULO ESPECIAL MEDICINA (Buenos Aires) 2012; 72: 221-226 ISSN 0025-7680 LA VÍA DE TRANSDUCCIÓN DE SEÑALES TOR DE MAMÍFEROS ESTÁ PRESENTE EN TRYPANOSOMA CRUZI. ...
Arginine kinase catalyzes the transphosphorylation between phosphoarginine and ADP. Phosphoarginine is involved in temporal ATP buffering and inorganic phosphate regulation. Trypanosoma cruzi arginine kinase phosphorylates only L-arginine... more
Arginine kinase catalyzes the transphosphorylation between phosphoarginine and ADP. Phosphoarginine is involved in temporal ATP buffering and inorganic phosphate regulation. Trypanosoma cruzi arginine kinase phosphorylates only L-arginine (specific activity 398.9 x mUE-min(-1) x mg(-1)), and is inhibited by the arginine analogs, agmatine, canavanine, nitroarginine, and homoarginine. Canavanine and homoarginine also produce a significant inhibition of the epimastigote culture growth (79.7% and 55.8%, respectively). Inhibition constants were calculated for canavanine and homoarginine (7.55 and 6.02 mM, respectively). In addition, two novel guanidino kinase activities were detected in the epimastigote soluble extract. The development of the arginine kinase inhibitors of T. cruzi could be an important feature because the phosphagens biosynthetic pathway in trypanosomatids is different from the one in their mammalian hosts.
Chemoenzymatic preparation of ribose, deoxyribose and arabinose 5-phosphates was accomplished. These compounds were tested as starting materials in the enzymatic preparation of natural and modified purine and pyrimidine nucleosides, using... more
Chemoenzymatic preparation of ribose, deoxyribose and arabinose 5-phosphates was accomplished. These compounds were tested as starting materials in the enzymatic preparation of natural and modified purine and pyrimidine nucleosides, using an overexpressed Escherichia coli phosphopentomutase.
SUMMARYHere, we present the characterization of a trypanosomatid nucleoside diphosphate kinase (TcNDPK1) exhibiting nuclease activity. This is the first identification of a NDPK with this property in trypanosomatid organisms. The... more
SUMMARYHere, we present the characterization of a trypanosomatid nucleoside diphosphate kinase (TcNDPK1) exhibiting nuclease activity. This is the first identification of a NDPK with this property in trypanosomatid organisms. The recombinant TcNDPK1 protein cleaves not only linear DNA, but also supercoiled plasmid DNA. Additionally, TcNDPK1 is capable of degrading Trypanosoma cruzi genomic DNA. ATP or ADP did not affect the nuclease activity, while the absence of Mg2+ completely inhibits this activity. NDPK and nuclease activities were inhibited at the same temperature, suggesting the presence of related catalytic sites. Furthermore, phenogram analysis showed that TcNDPK1 is close to Drosophila melanogaster and human NDPKs. The unspecific nuclease activity could suggest a participation in cellular processes such as programmed cell death.
SUMMARYPhosphoarginine is a cell energy buffer molecule synthesized by the enzyme arginine kinase. In Trypanosoma cruzi, the aetiological agent of Chagas' disease, 2 different isoforms were identified by data mining, but only 1 was... more
SUMMARYPhosphoarginine is a cell energy buffer molecule synthesized by the enzyme arginine kinase. In Trypanosoma cruzi, the aetiological agent of Chagas' disease, 2 different isoforms were identified by data mining, but only 1 was expressed during the parasite life cycle. The digitonin extraction pattern of arginine kinase differed from those obtained for reservosomes, glycosomes and mitochondrial markers, and similar to the cytosolic marker. Immunofluorescence analysis revealed that although arginine kinase is localized mainly in unknown punctuated structures and also in the cytosol, it did not co-localize with any of the subcelular markers. This punctuated pattern has previously been observed in many cytosolic proteins of trypanosomatids. The knowledge of the subcellular localization of phosphagen kinases is a crucial issue to understand their physiological role in protozoan parasites.
A poly-zinc finger protein, designated PZFP1 was identified in Trypanosoma cruzi for the first time. The protein has 191 amino acids, contains seven motifs Cys(X)(2)Cys(X)(4)His(X)(4)Cys. A recombinant PZFP1 was generated in E. coli and... more
A poly-zinc finger protein, designated PZFP1 was identified in Trypanosoma cruzi for the first time. The protein has 191 amino acids, contains seven motifs Cys(X)(2)Cys(X)(4)His(X)(4)Cys. A recombinant PZFP1 was generated in E. coli and the expected 21kDa polypeptide co-purified with two other inducible products of about 42 and 63kDa. Western blot analysis of cell extracts using an anti-PZFP1 antibody recognized a major band of 41kDa. Electrophoretic mobility shift analysis demonstrated that both, recombinant and native PZFP1, specifically interact with single-stranded DNA or RNA oligonucleotides carrying recognition sequences of other CCHC proteins. The protein was localized mainly in the cytoplasm and nucleus as observed by indirect immunofluorescence analysis. PZFP1 interacted specifically with a T. cruzi serine-arginine-rich protein (TcSR) in a yeast two-hybrid assay, suggesting a role in pre-mRNA processing.

And 26 more