default search action
Amaury Lendasse
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2023
- [c103]Brandon Warner, Edward R. Ratner, Amaury Lendasse:
X-ELM: A Fast Explainability Approach for Extreme Learning Machines. IWANN (2) 2023: 411-422 - [c102]Tamirat Atsemegiorgis, Leonardo Espinosa Leal, Amaury Lendasse, Stefan Mattbäck, Kaj-Mikael Björk, Anton Akusok:
Acid Sulfate Soils Classification and Prediction from Environmental Covariates Using Extreme Learning Machines. IWANN (1) 2023: 614-625 - [c101]Yunpeng Jack Zhang, Kailai Wang, Lingguang Song, Amaury Lendasse, Houbing Herbert Song, Zhu Han, Rakesh M. Verma, Arlei Silva, Carlos E. Rubio-Medrano, Zhixia Richard Li, Guohui Zhang:
USDOT Tier-1 University Transportation Center for Advancing Cybersecurity Research and Education. MOST 2023: 237-241 - 2021
- [c100]Chris Bronk, Amaury Lendasse, Peggy Lindner, Dan S. Wallach, Barbara Hammer:
Machine Learning for Measuring and Analyzing Online Social Communications. ESANN 2021 - [c99]Baichuan Chi, Amaury Lendasse, Edward R. Ratner, Renjie Hu:
A Multi-ELM Model for Incomplete Data. ESANN 2021 - [c98]Amaury Lendasse, Kallin Khan, Edward R. Ratner:
NNBMSS: a Novel and Fast Method for Model Structure Selection. ESANN 2021 - [c97]Anton Akusok, Leonardo Espinosa Leal, Kaj-Mikael Björk, Amaury Lendasse, Renjie Hu:
Handwriting features based detection of fake signatures. PETRA 2021: 86-89 - 2020
- [j77]Renjie Hu, Amany Farag, Kaj-Mikael Björk, Amaury Lendasse:
Using machine learning to identify top predictors for nurses' willingness to report medication errors. Array 8: 100049 (2020) - [j76]Renjie Hu, Edward R. Ratner, David E. Stewart, Kaj-Mikael Björk, Amaury Lendasse:
A modified Lanczos Algorithm for fast regularization of extreme learning machines. Neurocomputing 414: 172-181 (2020) - [j75]Zhiyu Sun, Yusen He, Andrey Gritsenko, Amaury Lendasse, Stephen Baek:
Embedded spectral descriptors: learning the point-wise correspondence metric via Siamese neural networks. J. Comput. Des. Eng. 7(1): 18-29 (2020) - [j74]Shaoping Xiao, Renjie Hu, Zhen Li, Siamak Attarian, Kaj-Mikael Björk, Amaury Lendasse:
A machine-learning-enhanced hierarchical multiscale method for bridging from molecular dynamics to continua. Neural Comput. Appl. 32(18): 14359-14373 (2020) - [c96]Kallin Khan, Edward R. Ratner, Robert Ludwig, Amaury Lendasse:
Feature Bagging and Extreme Learning Machines: Machine Learning with Severe Memory Constraints. IJCNN 2020: 1-7 - [e1]Jiuwen Cao, Chi-Man Vong, Yoan Miche, Amaury Lendasse:
Proceedings of ELM 2018, International Conference on Extreme Learning Machine, Singapore, 21-23 November 2018. Proceedings in Adaptation, Learning and Optimization 11, Springer 2020, ISBN 978-3-030-23306-8 [contents]
2010 – 2019
- 2019
- [j73]Yoan Miche, Wei Ren, Ian Oliver, Silke Holtmanns, Amaury Lendasse:
A Framework for Privacy Quantification: Measuring the Impact of Privacy Techniques Through Mutual Information, Distance Mapping, and Machine Learning. Cogn. Comput. 11(2): 241-261 (2019) - [j72]Renjie Hu, Karl Ratner, Edward R. Ratner, Yoan Miche, Kaj-Mikael Björk, Amaury Lendasse:
ELM-SOM+: A continuous mapping for visualization. Neurocomputing 365: 147-156 (2019) - [j71]Anton Akusok, Yoan Miche, Kaj-Mikael Björk, Amaury Lendasse:
Per-sample prediction intervals for extreme learning machines. Int. J. Mach. Learn. Cybern. 10(5): 991-1001 (2019) - [j70]Bo He, Yan Song, Yuemei Zhu, Qixin Sha, Yue Shen, Tianhong Yan, Rui Nian, Amaury Lendasse:
Local receptive fields based extreme learning machine with hybrid filter kernels for image classification. Multidimens. Syst. Signal Process. 30(3): 1149-1169 (2019) - [j69]Wan-Yu Deng, Amaury Lendasse, Yew-Soon Ong, Ivor Wai-Hung Tsang, Lin Chen, Qing-Hua Zheng:
Domain Adaption via Feature Selection on Explicit Feature Map. IEEE Trans. Neural Networks Learn. Syst. 30(4): 1180-1190 (2019) - [c95]Anton Akusok, Kaj-Mikael Björk, Leonardo Espinosa Leal, Yoan Miche, Renjie Hu, Amaury Lendasse:
Spiking networks for improved cognitive abilities of edge computing devices. PETRA 2019: 307-308 - [i13]Anton Akusok, Emil Eirola, Yoan Miche, Ian Oliver, Kaj-Mikael Björk, Andrey Gritsenko, Stephen Baek, Amaury Lendasse:
Incremental ELMVIS for unsupervised learning. CoRR abs/1912.08638 (2019) - [i12]Leonardo Espinosa Leal, Kaj-Mikael Björk, Amaury Lendasse, Anton Akusok:
A Web Page Classifier Library Based on Random Image Content Analysis Using Deep Learning. CoRR abs/1912.08644 (2019) - [i11]Anton Akusok, Kaj-Mikael Björk, Leonardo Espinosa Leal, Yoan Miche, Renjie Hu, Amaury Lendasse:
Spiking Networks for Improved Cognitive Abilities of Edge Computing Devices. CoRR abs/1912.09083 (2019) - [i10]Anton Akusok, Emil Eirola, Kaj-Mikael Björk, Amaury Lendasse:
Extreme Learning Tree. CoRR abs/1912.09087 (2019) - [i9]Anton Akusok, Yoan Miche, Kaj-Mikael Björk, Amaury Lendasse:
Per-sample Prediction Intervals for Extreme Learning Machines. CoRR abs/1912.09090 (2019) - [i8]Anton Akusok, Mirka Saarela, Tommi Kärkkäinen, Kaj-Mikael Björk, Amaury Lendasse:
Mislabel Detection of Finnish Publication Ranks. CoRR abs/1912.09094 (2019) - 2018
- [j68]Andrey Gritsenko, Anton Akusok, Stephen Baek, Yoan Miche, Amaury Lendasse:
Extreme Learning Machines for VISualization+R: Mastering Visualization with Target Variables. Cogn. Comput. 10(3): 464-477 (2018) - [j67]Paula Lauren, Guangzhi Qu, Jucheng Yang, Paul Watta, Guang-Bin Huang, Amaury Lendasse:
Generating Word Embeddings from an Extreme Learning Machine for Sentiment Analysis and Sequence Labeling Tasks. Cogn. Comput. 10(4): 625-638 (2018) - [j66]Buse Gul Atli, Yoan Miche, Aapo Kalliola, Ian Oliver, Silke Holtmanns, Amaury Lendasse:
Anomaly-Based Intrusion Detection Using Extreme Learning Machine and Aggregation of Network Traffic Statistics in Probability Space. Cogn. Comput. 10(5): 848-863 (2018) - [j65]Yan Song, Shujing Zhang, Bo He, Qixin Sha, Yue Shen, Tianhong Yan, Rui Nian, Amaury Lendasse:
Gaussian derivative models and ensemble extreme learning machine for texture image classification. Neurocomputing 277: 53-64 (2018) - [j64]Paula Lauren, Guangzhi Qu, Feng Zhang, Amaury Lendasse:
Discriminant document embeddings with an extreme learning machine for classifying clinical narratives. Neurocomputing 277: 129-138 (2018) - [j63]Fabian Boemer, Edward R. Ratner, Amaury Lendasse:
Parameter-free image segmentation with SLIC. Neurocomputing 277: 228-236 (2018) - [j62]Setareh Roshan, Yoan Miche, Anton Akusok, Amaury Lendasse:
Adaptive and online network intrusion detection system using clustering and Extreme Learning Machines. J. Frankl. Inst. 355(4): 1752-1779 (2018) - [c94]Zhen Li, Karl Ratner, Edward R. Ratner, Kallin Khan, Kaj-Mikael Björk, Amaury Lendasse:
A Novel ELM Ensemble for Time Series Prediction. ELM 2018: 283-291 - [c93]Renjie Hu, Venous Roshdibenam, Hans J. Johnson, Emil Eirola, Anton Akusok, Yoan Miche, Kaj-Mikael Björk, Amaury Lendasse:
ELM-SOM: A Continuous Self-Organizing Map for Visualization. IJCNN 2018: 1-8 - [c92]Leonardo Espinosa Leal, Kaj-Mikael Björk, Amaury Lendasse, Anton Akusok:
A Web Page Classifier Library Based on Random Image Content Analysis Using Deep Learning. PETRA 2018: 13-16 - 2017
- [j61]Anton Akusok, Andrey Gritsenko, Yoan Miche, Kaj-Mikael Björk, Rui Nian, Paula Lauren, Amaury Lendasse:
Adding reliability to ELM forecasts by confidence intervals. Neurocomputing 219: 232-241 (2017) - [j60]Amaury Lendasse, Chi-Man Vong, Kar-Ann Toh, Yoan Miche, Guang-Bin Huang:
Advances in extreme learning machines (ELM2015). Neurocomputing 261: 1-3 (2017) - [c91]Wei Ren, Yoan Miche, Ian Oliver, Silke Holtmanns, Kaj-Mikael Björk, Amaury Lendasse:
On Distance Mapping from non-Euclidean Spaces to Euclidean Spaces. CD-MAKE 2017: 3-13 - [c90]Yoan Miche, Ian Oliver, Wei Ren, Silke Holtmanns, Anton Akusok, Amaury Lendasse:
Practical Estimation of Mutual Information on Non-Euclidean Spaces. CD-MAKE 2017: 123-136 - [c89]Anton Akusok, Emil Eirola, Yoan Miché, Andrey Gritsenko, Amaury Lendasse:
Advanced query strategies for Active Learning with Extreme Learning Machines. ESANN 2017 - [c88]Andrey Gritsenko, Emil Eirola, Daniel Schupp, Edward R. Ratner, Amaury Lendasse:
Solve Classification Tasks with Probabilities. Statistically-Modeled Outputs. HAIS 2017: 293-305 - [c87]Paula Lauren, Guangzhi Qu, Guang-Bin Huang, Paul Watta, Amaury Lendasse:
A low-dimensional vector representation for words using an extreme learning machine. IJCNN 2017: 1817-1822 - [c86]Anton Akusok, Emil Eirola, Kaj-Mikael Björk, Yoan Miché, Hans J. Johnson, Amaury Lendasse:
Brute-force Missing Data Extreme Learning Machine for Predicting Huntington's Disease. PETRA 2017: 189-192 - [i7]Zhiyu Sun, Yusen He, Andrey Gritsenko, Amaury Lendasse, Stephen Baek:
Deep Spectral Descriptors: Learning the point-wise correspondence metric via Siamese deep neural networks. CoRR abs/1710.06368 (2017) - 2016
- [j59]Amaury Lendasse, Chi-Man Vong, Yoan Miche, Guang-Bin Huang:
Advances in extreme learning machines (ELM2014). Neurocomputing 174: 1-3 (2016) - [j58]Dusan Sovilj, Kaj-Mikael Björk, Amaury Lendasse:
Comparison of combining methods using Extreme Learning Machines under small sample scenario. Neurocomputing 174: 4-17 (2016) - [j57]Qian Wang, Weiguo Wang, Rui Nian, Bo He, Yue Shen, Kaj-Mikael Björk, Amaury Lendasse:
Manifold learning in local tangent space via extreme learning machine. Neurocomputing 174: 18-30 (2016) - [j56]Alexander Grigorievskiy, Yoan Miche, Maarit Käpylä, Amaury Lendasse:
Singular Value Decomposition update and its application to (Inc)-OP-ELM. Neurocomputing 174: 99-108 (2016) - [j55]Dusan Sovilj, Emil Eirola, Yoan Miche, Kaj-Mikael Björk, Rui Nian, Anton Akusok, Amaury Lendasse:
Extreme learning machine for missing data using multiple imputations. Neurocomputing 174: 220-231 (2016) - [j54]Maite Termenon, Manuel Graña, Alexandre Savio, Anton Akusok, Yoan Miche, Kaj-Mikael Björk, Amaury Lendasse:
Brain MRI morphological patterns extraction tool based on Extreme Learning Machine and majority vote classification. Neurocomputing 174: 344-351 (2016) - [j53]Anton Akusok, Stephen Baek, Yoan Miché, Kaj-Mikael Björk, Rui Nian, Paula Lauren, Amaury Lendasse:
ELMVIS+: Fast nonlinear visualization technique based on cosine distance and extreme learning machines. Neurocomputing 205: 247-263 (2016) - [j52]Bo Han, Bo He, Tingting Sun, Tianhong Yan, Mengmeng Ma, Yue Shen, Amaury Lendasse:
HSR: L 1/2-regularized sparse representation for fast face recognition using hierarchical feature selection. Neural Comput. Appl. 27(2): 305-320 (2016) - [c85]Yoan Miché, Ian Oliver, Silke Holtmanns, Aapo Kalliola, Anton Akusok, Amaury Lendasse, Kaj-Mikael Björk:
Data Anonymization as a Vector Quantization Problem: Control Over Privacy for Health Data. CD-ARES 2016: 193-203 - [c84]Patrick Kouontchou, Amaury Lendasse, Yoan Miché, Alejandro Modesto, Peter Sarlin, Bertrand Maillet:
A R-SOM Analysis of the Link between Financial Market Conditions and a Systemic Risk Index Based on ICA-Factors of Systemic Risk Measures. HICSS 2016: 1759-1770 - [c83]Andrey Gritsenko, Anton Akusok, Yoan Miché, Kaj-Mikael Björk, Stephen Baek, Amaury Lendasse:
Combined nonlinear visualization and classification: ELMVIS++C. IJCNN 2016: 2617-2624 - [c82]Paula Lauren, Guangzhi Qu, Feng Zhang, Amaury Lendasse:
Clinical narrative classification using discriminant word embeddings with ELM. IJCNN 2016: 2931-2938 - [c81]Kaj-Mikael Björk, Emil Eirola, Yoan Miché, Amaury Lendasse:
A new application of machine learning in health care. PETRA 2016: 49 - 2015
- [j51]Anton Akusok, Kaj-Mikael Björk, Yoan Miché, Amaury Lendasse:
High-Performance Extreme Learning Machines: A Complete Toolbox for Big Data Applications. IEEE Access 3: 1011-1025 (2015) - [j50]Anton Akusok, Yoan Miche, Juha Karhunen, Kaj-Mikael Björk, Rui Nian, Amaury Lendasse:
Arbitrary Category Classification of Websites Based on Image Content. IEEE Comput. Intell. Mag. 10(2): 30-41 (2015) - [j49]Amaury Lendasse, Qing He, Yoan Miché, Guang-Bin Huang:
Advances in Extreme Learning Machines (ELM2013). Neurocomputing 149: 158-159 (2015) - [j48]Bo Han, Bo He, Rui Nian, Mengmeng Ma, Shujing Zhang, Minghui Li, Amaury Lendasse:
LARSEN-ELM: Selective ensemble of extreme learning machines using LARS for blended data. Neurocomputing 149: 285-294 (2015) - [j47]Anton Akusok, David Veganzones, Yoan Miché, Kaj-Mikael Björk, Philippe du Jardin, Eric Séverin, Amaury Lendasse:
MD-ELM: Originally Mislabeled Samples Detection using OP-ELM Model. Neurocomputing 159: 242-250 (2015) - [j46]Amauri Holanda de Souza Júnior, Francesco Corona, Guilherme De A. Barreto, Yoan Miché, Amaury Lendasse:
Minimal Learning Machine: A novel supervised distance-based approach for regression and classification. Neurocomputing 164: 34-44 (2015) - [j45]Yoan Miché, Anton Akusok, David Veganzones, Kaj-Mikael Björk, Eric Séverin, Philippe du Jardin, Maite Termenon, Amaury Lendasse:
SOM-ELM - Self-Organized Clustering using ELM. Neurocomputing 165: 238-254 (2015) - [j44]Yoan Miche, Meng-Hiot Lim, Amaury Lendasse, Yew-Soon Ong:
Meme representations for game agents. World Wide Web 18(2): 215-234 (2015) - [c80]Kaj-Mikael Björk, Patrick Kouontchou, Amaury Lendasse, Yoan Miché, Bertrand Maillet:
Towards a Tomographic Index of Systemic Risk Measures. ESANN 2015 - [c79]C. Swaney, Anton Akusok, Kaj-Mikael Björk, Yoan Miché, Amaury Lendasse:
Efficient Skin Segmentation via Neural Networks: HP-ELM and BD-SOM. INNS Conference on Big Data 2015: 400-409 - [c78]Emil Eirola, Andrey Gritsenko, Anton Akusok, Kaj-Mikael Björk, Yoan Miche, Dusan Sovilj, Rui Nian, Bo He, Amaury Lendasse:
Extreme Learning Machines for Multiclass Classification: Refining Predictions with Gaussian Mixture Models. IWANN (2) 2015: 153-164 - [c77]Luiza Sayfullina, Emil Eirola, Dmitry Komashinsky, Paolo Palumbo, Yoan Miché, Amaury Lendasse, Juha Karhunen:
Efficient Detection of Zero-day Android Malware Using Normalized Bernoulli Naive Bayes. TrustCom/BigDataSE/ISPA (1) 2015: 198-205 - 2014
- [j43]Bo He, Dongxun Xu, Rui Nian, Mark van Heeswijk, Qi Yu, Yoan Miche, Amaury Lendasse:
Fast Face Recognition Via Sparse Coding and Extreme Learning Machine. Cogn. Comput. 6(2): 264-277 (2014) - [j42]Shujing Zhang, Bo He, Rui Nian, Jing Wang, Bo Han, Amaury Lendasse, Guang Yuan:
Fast Image Recognition Based on Independent Component Analysis and Extreme Learning Machine. Cogn. Comput. 6(3): 405-422 (2014) - [j41]Anton Akusok, Yoan Miche, Jozsef Hegedus, Rui Nian, Amaury Lendasse:
A Two-Stage Methodology Using K-NN and False-Positive Minimizing ELM for Nominal Data Classification. Cogn. Comput. 6(3): 432-445 (2014) - [j40]Alberto Guillén, M. Isabel García Arenas, Mark van Heeswijk, Dusan Sovilj, Amaury Lendasse, Luis Javier Herrera, Héctor Pomares, Ignacio Rojas:
Fast Feature Selection in a GPU Cluster Using the Delta Test. Entropy 16(2): 854-869 (2014) - [j39]Amaury Lendasse, Qing He, Yoan Miche, Guang-Bin Huang:
Advances in extreme learning machines (ELM2012). Neurocomputing 128: 1-3 (2014) - [j38]Ramón Moreno, Francesco Corona, Amaury Lendasse, Manuel Graña, Lênio S. Galvão:
Extreme learning machines for soybean classification in remote sensing hyperspectral images. Neurocomputing 128: 207-216 (2014) - [j37]Rui Nian, Bo He, Bing Zheng, Mark van Heeswijk, Qi Yu, Yoan Miche, Amaury Lendasse:
Extreme learning machine towards dynamic model hypothesis in fish ethology research. Neurocomputing 128: 273-284 (2014) - [j36]Qi Yu, Yoan Miche, Eric Séverin, Amaury Lendasse:
Bankruptcy prediction using Extreme Learning Machine and financial expertise. Neurocomputing 128: 296-302 (2014) - [j35]Qi Yu, Mark van Heeswijk, Yoan Miche, Rui Nian, Bo He, Eric Séverin, Amaury Lendasse:
Ensemble delta test-extreme learning machine (DT-ELM) for regression. Neurocomputing 129: 153-158 (2014) - [j34]Emil Eirola, Amaury Lendasse, Vincent Vandewalle, Christophe Biernacki:
Mixture of Gaussians for distance estimation with missing data. Neurocomputing 131: 32-42 (2014) - [j33]Alexander Grigorievskiy, Yoan Miche, Anne-Mari Ventelä, Eric Séverin, Amaury Lendasse:
Long-term time series prediction using OP-ELM. Neural Networks 51: 50-56 (2014) - [c76]Mark van Heeswijk, Amaury Lendasse, Yoan Miché:
Compressive ELM: Improved Models through Exploiting Time-Accuracy Trade-Offs. EANN 2014: 165-174 - [c75]Anton Akusok, David Veganzones, Yoan Miché, Eric Séverin, Amaury Lendasse:
Finding Originally Mislabels with MD-ELM. ESANN 2014 - [c74]Emil Eirola, Amaury Lendasse, Juha Karhunen:
Variable selection for regression problems using Gaussian mixture models to estimate mutual information. IJCNN 2014: 1606-1613 - [c73]Emil Eirola, Amaury Lendasse, Francesco Corona, Michel Verleysen:
The delta test: The 1-NN estimator as a feature selection criterion. IJCNN 2014: 4214-4222 - [i6]Bo Han, Bo He, Rui Nian, Mengmeng Ma, Shujing Zhang, Minghui Li, Amaury Lendasse:
LARSEN-ELM: Selective Ensemble of Extreme Learning Machines using LARS for Blended Data. CoRR abs/1408.2003 (2014) - [i5]Bo Han, Bo He, Mengmeng Ma, Tingting Sun, Tianhong Yan, Amaury Lendasse:
RMSE-ELM: Recursive Model based Selective Ensemble of Extreme Learning Machines for Robustness Improvement. CoRR abs/1408.2004 (2014) - [i4]Yang Liu, Bo He, Diya Dong, Yue Shen, Tianhong Yan, Rui Nian, Amaury Lendasse:
Robust OS-ELM with a novel selective ensemble based on particle swarm optimization. CoRR abs/1408.2890 (2014) - [i3]Bo Han, Bo He, Tingting Sun, Mengmeng Ma, Amaury Lendasse:
HSR: L1/2 Regularized Sparse Representation for Fast Face Recognition using Hierarchical Feature Selection. CoRR abs/1409.6448 (2014) - 2013
- [j32]Alberto Guillén, Amaury Lendasse, Guilherme A. Barreto:
Data Preprocessing and Model Design for Medicine Problems. Comput. Math. Methods Medicine 2013: 625623:1 (2013) - [j31]Erik Cambria, Guang-Bin Huang, Liyanaarachchi Lekamalage Chamara Kasun, Hongming Zhou, Chi-Man Vong, Jiarun Lin, Jianping Yin, Zhiping Cai, Qiang Liu, Kuan Li, Victor C. M. Leung, Liang Feng, Yew-Soon Ong, Meng-Hiot Lim, Anton Akusok, Amaury Lendasse, Francesco Corona, Rui Nian, Yoan Miche, Paolo Gastaldo, Rodolfo Zunino, Sergio Decherchi, Xuefeng Yang, Kezhi Mao, Beom-Seok Oh, Je-Hyoung Jeon, Kar-Ann Toh, Andrew Beng Jin Teoh, Jaihie Kim, Hanchao Yu, Yiqiang Chen, Junfa Liu:
Extreme Learning Machines. IEEE Intell. Syst. 28(6): 30-59 (2013) - [j30]Qi Yu, Yoan Miche, Emil Eirola, Mark van Heeswijk, Eric Séverin, Amaury Lendasse:
Regularized extreme learning machine for regression with missing data. Neurocomputing 102: 45-51 (2013) - [j29]Benoît Frénay, Mark van Heeswijk, Yoan Miche, Michel Verleysen, Amaury Lendasse:
Feature selection for nonlinear models with extreme learning machines. Neurocomputing 102: 111-124 (2013) - [j28]Emil Eirola, Gauthier Doquire, Michel Verleysen, Amaury Lendasse:
Distance estimation in numerical data sets with missing values. Inf. Sci. 240: 115-128 (2013) - [j27]Rui Nian, Bo He, Amaury Lendasse:
3D object recognition based on a geometrical topology model and extreme learning machine. Neural Comput. Appl. 22(3-4): 427-433 (2013) - [c72]Andrej Gisbrecht, Yoan Miché, Barbara Hammer, Amaury Lendasse:
Visualizing dependencies of spectral features using mutual information. ESANN 2013 - [c71]Patrick Kouontchou, Amaury Lendasse, Yoan Miché, Bertrand Maillet:
Forecasting Financial Markets with Classified Tactical Signals. ESANN 2013 - [c70]Emil Eirola, Amaury Lendasse:
Gaussian Mixture Models for Time Series Modelling, Forecasting, and Interpolation. IDA 2013: 162-173 - [c69]Amaury Lendasse, Anton Akusok, Olli Simula, Francesco Corona, Mark van Heeswijk, Emil Eirola, Yoan Miche:
Extreme Learning Machine: A Robust Modeling Technique? Yes! IWANN (1) 2013: 17-35 - [c68]Amauri Holanda de Souza Júnior, Francesco Corona, Yoan Miche, Amaury Lendasse, Guilherme A. Barreto, Olli Simula:
Minimal Learning Machine: A New Distance-Based Method for Supervised Learning. IWANN (1) 2013: 408-416 - [c67]Dusan Sovilj, Amaury Lendasse, Olli Simula:
Extending Extreme Learning Machine with Combination Layer. IWANN (1) 2013: 417-426 - 2012
- [j26]Federico Montesino-Pouzols, Amaury Lendasse:
Adaptive kernel smoothing regression for spatio-temporal environmental datasets. Neurocomputing 90: 59-65 (2012) - [c66]Andrej Gisbrecht, Dusan Sovilj, Barbara Hammer, Amaury Lendasse:
Relevance learning for time series inspection. ESANN 2012 - [c65]Yoan Miche, Tatiana Chistiakova, Anton Akusok, Amaury Lendasse, Rui Nian, Alberto Guillén:
Fast variable selection for memetracker phrases time series prediction. PETRA 2012: 47 - [p1]Alberto Guillén, Dusan Sovilj, Mark van Heeswijk, Luis Javier Herrera, Amaury Lendasse, Héctor Pomares, Ignacio Rojas:
Evolutive Approaches for Variable Selection Using a Non-parametric Noise Estimator. Parallel Architectures and Bioinspired Algorithms 2012: 243-266 - 2011
- [j25]Yoan Miche, Mark van Heeswijk, Patrick Bas, Olli Simula, Amaury Lendasse:
TROP-ELM: A double-regularized ELM using LARS and Tikhonov regularization. Neurocomputing 74(16): 2413-2421 (2011) - [j24]Mark van Heeswijk, Yoan Miche, Erkki Oja, Amaury Lendasse:
GPU-accelerated and parallelized ELM ensembles for large-scale regression. Neurocomputing 74(16): 2430-2437 (2011) - [j23]Elia Liitiäinen, Francesco Corona, Amaury Lendasse:
On the Curse of Dimensionality in Supervised Learning of Smooth Regression Functions. Neural Process. Lett. 34(2): 133-154 (2011) - [c64]Jozsef Hegedus, Yoan Miche, Alexander Ilin, Amaury Lendasse:
Methodology for Behavioral-based Malware Analysis and Detection Using Random Projections and K-Nearest Neighbors Classifiers. CIS 2011: 1016-1023 - [c63]Federico Montesino-Pouzols, Amaury Lendasse:
Adaptive kernel smoothing regression using vector quantization. EAIS 2011: 85-92 - [c62]Federico Montesino-Pouzols, Amaury Lendasse:
Adaptive Kernel Smoothing Regression for Spatio-Temporal Environmental Datasets. ESANN 2011 - [c61]Li Yao, Amaury Lendasse, Francesco Corona:
Locating Anomalies Using Bayesian Factorizations and Masks. ESANN 2011 - 2010
- [j22]Qi Yu, Yoan Miché, Antti Sorjamaa, Alberto Guillén, Amaury Lendasse, Eric Séverin:
OP-KNN: Method and Applications. Adv. Artif. Neural Syst. 2010: 597373:1-597373:6 (2010) - [j21]Federico Montesino-Pouzols, Amaury Lendasse:
Evolving fuzzy optimally pruned extreme learning machine for regression problems. Evol. Syst. 1(1): 43-58 (2010) - [j20]Federico Montesino-Pouzols, Amaury Lendasse, Angel Barriga Barros:
Autoregressive time series prediction by means of fuzzy inference systems using nonparametric residual variance estimation. Fuzzy Sets Syst. 161(4): 471-497 (2010) - [j19]Paul Merlin, Antti Sorjamaa, Bertrand Maillet, Amaury Lendasse:
X-SOM and L-SOM: A double classification approach for missing value imputation. Neurocomputing 73(7-9): 1103-1108 (2010) - [j18]Amaury Lendasse, Timo Honkela, Olli Simula:
European Symposium on Times Series Prediction. Neurocomputing 73(10-12): 1919-1922 (2010) - [j17]Alberto Guillén, Luis Javier Herrera, Ginés Rubio, Héctor Pomares, Amaury Lendasse, Ignacio Rojas:
New method for instance or prototype selection using mutual information in time series prediction. Neurocomputing 73(10-12): 2030-2038 (2010) - [j16]Elia Liitiäinen, Francesco Corona, Amaury Lendasse:
Residual variance estimation using a nearest neighbor statistic. J. Multivar. Anal. 101(4): 811-823 (2010) - [j15]Elia Liitiäinen, Amaury Lendasse, Francesco Corona:
A boundary corrected expansion of the moments of nearest neighbor distributions. Random Struct. Algorithms 37(2): 223-247 (2010) - [j14]Yoan Miche, Antti Sorjamaa, Patrick Bas, Olli Simula, Christian Jutten, Amaury Lendasse:
OP-ELM: optimally pruned extreme learning machine. IEEE Trans. Neural Networks 21(1): 158-162 (2010) - [c60]Laura Kainulainen, Qi Yu, Yoan Miche, Emil Eirola, Eric Séverin, Amaury Lendasse:
Ensembles of Locally Linear Models: Application to Bankruptcy Prediction. DMIN 2010: 280-286 - [c59]Mark van Heeswijk, Yoan Miche, Erkki Oja, Amaury Lendasse:
Solving Large Regression Problems using an Ensemble of GPU-accelerated ELMs. ESANN 2010 - [c58]Yoan Miche, Emil Eirola, Patrick Bas, Olli Simula, Christian Jutten, Amaury Lendasse, Michel Verleysen:
Ensemble Modeling with a Constrained Linear System of Leave-One-Out Outputs. ESANN 2010 - [c57]Yoan Miche, Benjamin Schrauwen, Amaury Lendasse:
Machine Learning Techniques based on Random Projections. ESANN 2010 - [c56]Federico Montesino-Pouzols, Amaury Lendasse:
Evolving fuzzy Optimally Pruned Extreme Learning Machine: A comparative analysis. FUZZ-IEEE 2010: 1-8 - [c55]Elina Parviainen, Jaakko Riihimäki, Yoan Miche, Amaury Lendasse:
Interpreting Extreme Learning Machine as an Approximation to an Infinite Neural Network. KDIR 2010: 65-73 - [c54]Federico Montesino-Pouzols, Amaury Lendasse:
Effect of different detrending approaches on computational intelligence models of time series. IJCNN 2010: 1-8
2000 – 2009
- 2009
- [j13]Yoan Miche, Patrick Bas, Amaury Lendasse, Christian Jutten, Olli Simula:
Reliable Steganalysis Using a Minimum Set of Samples and Features. EURASIP J. Inf. Secur. 2009 (2009) - [j12]Elia Liitiäinen, Michel Verleysen, Francesco Corona, Amaury Lendasse:
Residual variance estimation in machine learning. Neurocomputing 72(16-18): 3692-3703 (2009) - [j11]Francesco Corona, Elia Liitiäinen, Amaury Lendasse, Lorenzo Sassu, Stefano Melis, Roberto Baratti:
A SOM-based approach to estimating product properties from spectroscopic measurements. Neurocomputing 73(1-3): 71-79 (2009) - [c53]Alberto Guillén, Luis Javier Herrera, Ginés Rubio, Héctor Pomares, Amaury Lendasse, Ignacio Rojas:
Applying Mutual Information for Prototype or Instance Selection in Regression Problems. ESANN 2009 - [c52]Paul Merlin, Antti Sorjamaa, Bertrand Maillet, Amaury Lendasse:
X-SOM and L-SOM: a nested approach for missing value imputation. ESANN 2009 - [c51]Yoan Miche, Amaury Lendasse:
A faster model selection criterion for OP-ELM and OP-KNN: Hannan-Quinn criterion. ESANN 2009 - [c50]Alberto Guillén, Antti Sorjamaa, Ginés Rubio, Amaury Lendasse, Ignacio Rojas:
Mutual Information Based Initialization of Forward-Backward Search for Feature Selection in Regression Problems. ICANN (1) 2009: 1-9 - [c49]Mark van Heeswijk, Yoan Miche, Tiina Lindh-Knuutila, Peter A. J. Hilbers, Timo Honkela, Erkki Oja, Amaury Lendasse:
Adaptive Ensemble Models of Extreme Learning Machines for Time Series Prediction. ICANN (2) 2009: 305-314 - [c48]Souhaib Ben Taieb, Gianluca Bontempi, Antti Sorjamaa, Amaury Lendasse:
Long-term prediction of time series by combining direct and MIMO strategies. IJCNN 2009: 3054-3061 - [c47]Fernando Mateo, Dusan Sovilj, Rafael Gadea Gironés, Amaury Lendasse:
RCGA-S/RCGA-SP Methods to Minimize the Delta Test for Regression Tasks. IWANN (1) 2009: 359-366 - [c46]Alberto Guillén, Antti Sorjamaa, Yoan Miche, Amaury Lendasse, Ignacio Rojas:
Efficient Parallel Feature Selection for Steganography Problems. IWANN (1) 2009: 1224-1231 - [c45]Antti Sorjamaa, Francesco Corona, Yoan Miche, Paul Merlin, Bertrand Maillet, Eric Séverin, Amaury Lendasse:
Sparse Linear Combination of SOMs for Data Imputation: Application to Financial Database. WSOM 2009: 290-297 - [r1]Tuomas Kärnä, Amaury Lendasse:
Functional Dimension Reduction for Chemometrics. Encyclopedia of Artificial Intelligence 2009: 661-666 - 2008
- [j10]Alberto Guillén, Dusan Sovilj, Amaury Lendasse, Fernando Mateo, Ignacio Rojas:
Minimising the delta test for variable selection in regression problems. Int. J. High Perform. Syst. Archit. 1(4): 269-281 (2008) - [j9]Elia Liitiäinen, Francesco Corona, Amaury Lendasse:
On Nonparametric Residual Variance Estimation. Neural Process. Lett. 28(3): 155-167 (2008) - [c44]Emil Eirola, Elia Liitiäinen, Amaury Lendasse, Francesco Corona, Michel Verleysen:
Using the Delta Test for Variable Selection. ESANN 2008: 25-30 - [c43]Yoan Miche, Patrick Bas, Christian Jutten, Olli Simula, Amaury Lendasse:
A Methodology for Building Regression Models using Extreme Learning Machine: OP-ELM. ESANN 2008: 247-252 - [c42]Amaury Lendasse, Francesco Corona:
Linear Projection based on Noise Variance Estimation - Application to Spectral Data. ESANN 2008: 457-462 - [c41]Federico Montesino-Pouzols, Amaury Lendasse, Angel Barriga:
Fuzzy inference based autoregressors for time series prediction using nonparametric residual variance estimation. FUZZ-IEEE 2008: 613-618 - [c40]Qi Yu, Antti Sorjamaa, Yoan Miche, Amaury Lendasse, Eric Séverin, Alberto Guillén, Fernando Mateo:
Optimal Pruned K-Nearest Neighbors: OP-KNN - Application to Financial Modeling. HIS 2008: 764-769 - [c39]Yoan Miche, Antti Sorjamaa, Amaury Lendasse:
OP-ELM: Theory, Experiments and a Toolbox. ICANN (1) 2008: 145-154 - [c38]Antti Sorjamaa, Yoan Miche, Robert Weiss, Amaury Lendasse:
Long-term prediction of time series using NNE-based projection and OP-ELM. IJCNN 2008: 2674-2680 - 2007
- [j8]Amaury Lendasse, Erkki Oja, Olli Simula, Michel Verleysen:
Time series prediction competition: The CATS benchmark. Neurocomputing 70(13-15): 2325-2329 (2007) - [j7]Antti Sorjamaa, Jin Hao, Nima Reyhani, Yongnan Ji, Amaury Lendasse:
Methodology for long-term prediction of time series. Neurocomputing 70(16-18): 2861-2869 (2007) - [c37]Elia Liitiäinen, Francesco Corona, Amaury Lendasse:
Nearest Neighbor Distributions and Noise Variance Estimation. ESANN 2007: 67-72 - [c36]Antti Sorjamaa, Paul Merlin, Bertrand Maillet, Amaury Lendasse:
SOM+EOF for finding missing values. ESANN 2007: 115-120 - [c35]Joos Vandewalle, Johan A. K. Suykens, Bart De Moor, Amaury Lendasse:
State-of-the-Art and Evolution in Public Data Sets and Competitions for System Identification, Time Series Prediction and Pattern Recognition. ICASSP (4) 2007: 1269-1272 - [c34]Amaury Lendasse, Elia Liitiäinen:
Variable Scaling for Time Series Prediction: Application to the ESTSP'07 and the NN3 Forecasting Competitions. IJCNN 2007: 2812-2816 - [c33]Antti Sorjamaa, Amaury Lendasse:
Time Series Prediction as a Problem of Missing Values: Application to ESTSP2007 and NN3 Competition Benchmarks. IJCNN 2007: 2948-2953 - [c32]Nima Reyhani, Amaury Lendasse:
An empirical dependence mesaures based on residual variance estimation. ISSPA 2007: 1-4 - [c31]Elia Liitiäinen, Amaury Lendasse, Francesco Corona:
Non-parametric Residual Variance Estimation in Supervised Learning. IWANN 2007: 63-71 - [c30]Tuomas Kärnä, Amaury Lendasse:
Gaussian Fitting Based FDA for Chemometrics. IWANN 2007: 186-193 - [c29]Yoan Miche, Patrick Bas, Amaury Lendasse, Christian Jutten, Olli Simula:
Advantages of Using Feature Selection Techniques on Steganalysis Schemes. IWANN 2007: 606-613 - [i2]Fabrice Rossi, Amaury Lendasse, Damien François, Vincent Wertz, Michel Verleysen:
Mutual information for the selection of relevant variables in spectrometric nonlinear modelling. CoRR abs/0709.3427 (2007) - [i1]Geoffroy Simon, Amaury Lendasse, Marie Cottrell, Jean-Claude Fort, Michel Verleysen:
Time Series Forecasting: Obtaining Long Term Trends with Self-Organizing Maps. CoRR abs/cs/0701052 (2007) - 2006
- [c28]Elia Liitiäinen, Nima Reyhani, Amaury Lendasse:
EM-algorithm for training of state-space models with application to time series prediction. ESANN 2006: 137-142 - [c27]Antti Sorjamaa, Amaury Lendasse:
Time series prediction using DirRec strategy. ESANN 2006: 143-148 - [c26]Amaury Lendasse, Francesco Corona, Jin Hao, Nima Reyhani, Michel Verleysen:
Determination of the Mahalanobis matrix using nonparametric noise estimations. ESANN 2006: 227-232 - [c25]Tuomas Kärnä, Fabrice Rossi, Amaury Lendasse:
LS-SVM functional network for time series prediction. ESANN 2006: 473-478 - [c24]Jarkko Tikka, Amaury Lendasse, Jaakko Hollmén:
Analysis of Fast Input Selection: Application in Time Series Prediction. ICANN (2) 2006: 161-170 - [c23]Elia Liitiäinen, Amaury Lendasse:
Long-Term Prediction of Time Series Using State-Space Models. ICANN (2) 2006: 181-190 - [c22]Yoan Miche, Benoit Roue, Amaury Lendasse, Patrick Bas:
A Feature Selection Methodology for Steganalysis. MRCS 2006: 49-56 - 2005
- [j6]Amaury Lendasse, Damien François, Vincent Wertz, Michel Verleysen:
Vector quantization: a weighted version for time-series forecasting. Future Gener. Comput. Syst. 21(7): 1056-1067 (2005) - [j5]Amaury Lendasse, Geoffroy Simon, Vincent Wertz, Michel Verleysen:
Fast bootstrap methodology for regression model selection. Neurocomputing 64: 161-181 (2005) - [j4]Geoffroy Simon, Amaury Lendasse, Marie Cottrell, Jean-Claude Fort, Michel Verleysen:
Time series forecasting: Obtaining long term trends with self-organizing maps. Pattern Recognit. Lett. 26(12): 1795-1808 (2005) - [c21]Nima Reyhani, Jin Hao, Yongnan Ji, Amaury Lendasse:
Mutual information and gamma test for input selection. ESANN 2005: 503-508 - [c20]Antti Sorjamaa, Amaury Lendasse, Michel Verleysen:
Pruned lazy learning models for time series prediction. ESANN 2005: 509-514 - [c19]Antti Sorjamaa, Jin Hao, Amaury Lendasse:
Mutual Information and k-Nearest Neighbors Approximator for Time Series Prediction. ICANN (2) 2005: 553-558 - [c18]Amaury Lendasse, Yongnan Ji, Nima Reyhani, Michel Verleysen:
LS-SVM Hyperparameter Selection with a Nonparametric Noise Estimator. ICANN (2) 2005: 625-630 - [c17]Antti Sorjamaa, Nima Reyhani, Amaury Lendasse:
Input and Structure Selection for k-NN Approximator. IWANN 2005: 985-992 - [c16]Jarkko Tikka, Jaakko Hollmén, Amaury Lendasse:
Input Selection for Long-Term Prediction of Time Series. IWANN 2005: 1002-1009 - [c15]Yongnan Ji, Jin Hao, Nima Reyhani, Amaury Lendasse:
Direct and Recursive Prediction of Time Series Using Mutual Information Selection. IWANN 2005: 1010-1017 - 2004
- [j3]John Aldo Lee, Amaury Lendasse, Michel Verleysen:
Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing 57: 49-76 (2004) - [j2]Geoffroy Simon, Amaury Lendasse, Marie Cottrell, Jean-Claude Fort, Michel Verleysen:
Double quantization of the regressor space for long-term time series prediction: method and proof of stability. Neural Networks 17(8-9): 1169-1181 (2004) - [c14]Amaury Lendasse, Geoffroy Simon, Vincent Wertz, Michel Verleysen:
Fast bootstrap for least-square support vector machines. ESANN 2004: 525-530 - 2003
- [c13]Geoffroy Simon, Amaury Lendasse, Vincent Wertz, Michel Verleysen:
Fast approximation of the bootstrap for model selection. ESANN 2003: 475-480 - [c12]Amaury Lendasse, Vincent Wertz, Michel Verleysen:
Model Selection with Cross-Validations and Bootstraps - Application to Time Series Prediction with RBFN Models. ICANN 2003: 573-580 - [c11]Amaury Lendasse, Damien François, Vincent Wertz, Michel Verleysen:
Nonlinear Time Series Prediction by Weighted Vector Quantization. International Conference on Computational Science 2003: 417-426 - [c10]Geoffroy Simon, Amaury Lendasse, Michel Verleysen:
Bootstrap for Model Selection: Linear Approximation of the Optimism. IWANN (1) 2003: 182-189 - 2002
- [j1]Amaury Lendasse, John Aldo Lee, Vincent Wertz, Michel Verleysen:
Forecasting electricity consumption using nonlinear projection and self-organizing maps. Neurocomputing 48(1-4): 299-311 (2002) - [c9]Amaury Lendasse, Marie Cottrell, Vincent Wertz, Michel Verleysen:
Prediction of electric load using Kohonen maps - Application to the Polish electricity consumption. ACC 2002: 3684-3689 - [c8]John Aldo Lee, Amaury Lendasse, Michel Verleysen:
Curvilinear Distance Analysis versus Isomap. ESANN 2002: 185-192 - [c7]Nabil Benoudjit, Cédric Archambeau, Amaury Lendasse, John Aldo Lee, Michel Verleysen:
Width optimization of the Gaussian kernels in Radial Basis Function Networks. ESANN 2002: 425-432 - 2001
- [c6]Amaury Lendasse, John Aldo Lee, Eric de Bodt, Vincent Wertz, Michel Verleysen:
Input data reduction for the prediction of financial time series. ESANN 2001: 237-244 - 2000
- [c5]John Aldo Lee, Amaury Lendasse, Nicolas Donckers, Michel Verleysen:
A robust non-linear projection method. ESANN 2000: 13-20 - [c4]Amaury Lendasse, John Aldo Lee, Vincent Wertz, Michel Verleysen:
Time series forecasting using CCA and Kohonen maps - application to electricity consumption. ESANN 2000: 329-334
1990 – 1999
- 1999
- [c3]Nicolas Donckers, Amaury Lendasse, Vincent Wertz, Michel Verleysen:
Extraction of intrinsic dimension using CCA - Application to blind sources separation. ESANN 1999: 339-344 - [c2]Michel Verleysen, Eric de Bodt, Amaury Lendasse:
Forecasting Financial Time Series through Intrinsic Dimension Estimation and Non-Linear Data Projection. IWANN (2) 1999: 596-605 - 1998
- [c1]Amaury Lendasse, Michel Verleysen, Eric de Bodt, Marie Cottrell, Philippe Grégoire:
Forecasting time-series by Kohonen classification. ESANN 1998: 221-226
Coauthor Index
aka: Yoan Miche
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-17 20:30 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint