default search action
Elad Hazan
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c115]Arun Sai Suggala, Y. Jennifer Sun, Praneeth Netrapalli, Elad Hazan:
Second Order Methods for Bandit Optimization and Control. COLT 2024: 4691-4763 - [c114]Xinyi Chen, Elad Hazan:
Open Problem: Black-Box Reductions and Adaptive Gradient Methods for Nonconvex Optimization. COLT 2024: 5317-5324 - [c113]Zhou Lu, Qiuyi Zhang, Xinyi Chen, Fred Zhang, David P. Woodruff, Elad Hazan:
Adaptive Regret for Bandits Made Possible: Two Queries Suffice. ICLR 2024 - [i102]Wenhan Xia, Chengwei Qin, Elad Hazan:
Chain of LoRA: Efficient Fine-tuning of Language Models via Residual Learning. CoRR abs/2401.04151 (2024) - [i101]Zhou Lu, Qiuyi Zhang, Xinyi Chen, Fred Zhang, David P. Woodruff, Elad Hazan:
Adaptive Regret for Bandits Made Possible: Two Queries Suffice. CoRR abs/2401.09278 (2024) - [i100]Arun Sai Suggala, Y. Jennifer Sun, Praneeth Netrapalli, Elad Hazan:
Second Order Methods for Bandit Optimization and Control. CoRR abs/2402.08929 (2024) - [i99]Noah Golowich, Elad Hazan, Zhou Lu, Dhruv Rohatgi, Y. Jennifer Sun:
Online Control in Population Dynamics. CoRR abs/2406.01799 (2024) - [i98]Y. Isabel Liu, Windsor Nguyen, Yagiz Devre, Evan Dogariu, Anirudha Majumdar, Elad Hazan:
Flash STU: Fast Spectral Transform Units. CoRR abs/2409.10489 (2024) - 2023
- [j24]Noga Alon, Alon Gonen, Elad Hazan, Shay Moran:
Boosting Simple Learners. TheoretiCS 2 (2023) - [c112]Zhou Lu, Nataly Brukhim, Paula Gradu, Elad Hazan:
Projection-free Adaptive Regret with Membership Oracles. ALT 2023: 1055-1073 - [c111]David Snyder, Meghan Booker, Nathaniel Simon, Wenhan Xia, Daniel Suo, Elad Hazan, Anirudha Majumdar:
Online Learning for Obstacle Avoidance. CoRL 2023: 2926-2954 - [c110]Paula Gradu, Elad Hazan, Edgar Minasyan:
Adaptive Regret for Control of Time-Varying Dynamics. L4DC 2023: 560-572 - [c109]Xinyi Chen, Edgar Minasyan, Jason D. Lee, Elad Hazan:
Regret Guarantees for Online Deep Control. L4DC 2023: 1032-1045 - [c108]Gautam Goel, Naman Agarwal, Karan Singh, Elad Hazan:
Best of Both Worlds in Online Control: Competitive Ratio and Policy Regret. L4DC 2023: 1345-1356 - [c107]Xinyi Chen, Elad Hazan:
Online Control for Meta-optimization. NeurIPS 2023 - [c106]Vladimir Feinberg, Xinyi Chen, Y. Jennifer Sun, Rohan Anil, Elad Hazan:
Sketchy: Memory-efficient Adaptive Regularization with Frequent Directions. NeurIPS 2023 - [c105]Udaya Ghai, Arushi Gupta, Wenhan Xia, Karan Singh, Elad Hazan:
Online Nonstochastic Model-Free Reinforcement Learning. NeurIPS 2023 - [c104]Elad Hazan, Adam Tauman Kalai, Varun Kanade, Clara Mohri, Y. Jennifer Sun:
Partial Matrix Completion. NeurIPS 2023 - [c103]Y. Jennifer Sun, Stephen H. Newman, Elad Hazan:
Optimal Rates for Bandit Nonstochastic Control. NeurIPS 2023 - [i97]Xinyi Chen, Elad Hazan:
A Nonstochastic Control Approach to Optimization. CoRR abs/2301.07902 (2023) - [i96]Vladimir Feinberg, Xinyi Chen, Y. Jennifer Sun, Rohan Anil, Elad Hazan:
Sketchy: Memory-efficient Adaptive Regularization with Frequent Directions. CoRR abs/2302.03764 (2023) - [i95]Y. Jennifer Sun, Stephen H. Newman, Elad Hazan:
Optimal Rates for Bandit Nonstochastic Control. CoRR abs/2305.15352 (2023) - [i94]Udaya Ghai, Arushi Gupta, Wenhan Xia, Karan Singh, Elad Hazan:
Online Nonstochastic Model-Free Reinforcement Learning. CoRR abs/2305.17552 (2023) - [i93]David Snyder, Meghan Booker, Nathaniel Simon, Wenhan Xia, Daniel Suo, Elad Hazan, Anirudha Majumdar:
Online Learning for Obstacle Avoidance. CoRR abs/2306.08776 (2023) - [i92]Elad Hazan, Nimrod Megiddo:
An Efficient Interior-Point Method for Online Convex Optimization. CoRR abs/2307.11668 (2023) - [i91]Xinyi Chen, Angelica Chen, Dean Foster, Elad Hazan:
AI safety by debate via regret minimization. CoRR abs/2312.04792 (2023) - [i90]Naman Agarwal, Daniel Suo, Xinyi Chen, Elad Hazan:
Spectral State Space Models. CoRR abs/2312.06837 (2023) - 2022
- [c102]Udaya Ghai, Udari Madhushani, Naomi Ehrich Leonard, Elad Hazan:
A Regret Minimization Approach to Multi-Agent Control. ICML 2022: 7422-7434 - [c101]Udaya Ghai, Xinyi Chen, Elad Hazan, Alexandre Megretski:
Robust Online Control with Model Misspecification. L4DC 2022: 1163-1175 - [c100]Nataly Brukhim, Elad Hazan, Karan Singh:
A Boosting Approach to Reinforcement Learning. NeurIPS 2022 - [c99]Udaya Ghai, Zhou Lu, Elad Hazan:
Non-convex online learning via algorithmic equivalence. NeurIPS 2022 - [i89]Udaya Ghai, Udari Madhushani, Naomi Ehrich Leonard, Elad Hazan:
A Regret Minimization Approach to Multi-Agent Contro. CoRR abs/2201.13288 (2022) - [i88]Edgar Minasyan, Paula Gradu, Max Simchowitz, Elad Hazan:
Online Control of Unknown Time-Varying Dynamical Systems. CoRR abs/2202.07890 (2022) - [i87]Zhou Lu, Wenhan Xia, Sanjeev Arora, Elad Hazan:
Adaptive Gradient Methods with Local Guarantees. CoRR abs/2203.01400 (2022) - [i86]Udaya Ghai, Zhou Lu, Elad Hazan:
Non-convex online learning via algorithmic equivalence. CoRR abs/2205.15235 (2022) - [i85]Xinyi Chen, Elad Hazan, Tongyang Li, Zhou Lu, Xinzhao Wang, Rui Yang:
Adaptive Online Learning of Quantum States. CoRR abs/2206.00220 (2022) - [i84]Zhou Lu, Elad Hazan:
Efficient Adaptive Regret Minimization. CoRR abs/2207.00646 (2022) - [i83]Varun Kanade, Elad Hazan, Adam Tauman Kalai:
Partial Matrix Completion. CoRR abs/2208.12063 (2022) - [i82]Elad Hazan, Karan Singh:
Introduction to Online Nonstochastic Control. CoRR abs/2211.09619 (2022) - [i81]Gautam Goel, Naman Agarwal, Karan Singh, Elad Hazan:
Best of Both Worlds in Online Control: Competitive Ratio and Policy Regret. CoRR abs/2211.11219 (2022) - [i80]Zhou Lu, Nataly Brukhim, Paula Gradu, Elad Hazan:
Projection-free Adaptive Regret with Membership Oracles. CoRR abs/2211.12638 (2022) - 2021
- [c98]Nataly Brukhim, Elad Hazan:
Online Boosting with Bandit Feedback. ALT 2021: 397-420 - [c97]Xinyi Chen, Elad Hazan:
Black-Box Control for Linear Dynamical Systems. COLT 2021: 1114-1143 - [c96]Naman Agarwal, Elad Hazan, Anirudha Majumdar, Karan Singh:
A Regret Minimization Approach to Iterative Learning Control. ICML 2021: 100-109 - [c95]Elad Hazan, Karan Singh:
Boosting for Online Convex Optimization. ICML 2021: 4140-4149 - [c94]Udaya Ghai, David Snyder, Anirudha Majumdar, Elad Hazan:
Generating Adversarial Disturbances for Controller Verification. L4DC 2021: 1192-1204 - [c93]Nataly Brukhim, Elad Hazan, Shay Moran, Indraneel Mukherjee, Robert E. Schapire:
Multiclass Boosting and the Cost of Weak Learning. NeurIPS 2021: 3057-3067 - [c92]Edgar Minasyan, Paula Gradu, Max Simchowitz, Elad Hazan:
Online Control of Unknown Time-Varying Dynamical Systems. NeurIPS 2021: 15934-15945 - [c91]Noga Alon, Alon Gonen, Elad Hazan, Shay Moran:
Boosting simple learners. STOC 2021: 481-489 - [i79]Daniel Suo, Cyril Zhang, Paula Gradu, Udaya Ghai, Xinyi Chen, Edgar Minasyan, Naman Agarwal, Karan Singh, Julienne LaChance, Tom Zajdel, Manuel Schottdorf, Daniel J. Cohen, Elad Hazan:
Machine Learning for Mechanical Ventilation Control. CoRR abs/2102.06779 (2021) - [i78]Elad Hazan, Karan Singh:
Boosting for Online Convex Optimization. CoRR abs/2102.09305 (2021) - [i77]Paula Gradu, John Hallman, Daniel Suo, Alex Yu, Naman Agarwal, Udaya Ghai, Karan Singh, Cyril Zhang, Anirudha Majumdar, Elad Hazan:
Deluca - A Differentiable Control Library: Environments, Methods, and Benchmarking. CoRR abs/2102.09968 (2021) - [i76]Naman Agarwal, Elad Hazan, Anirudha Majumdar, Karan Singh:
A Regret Minimization Approach to Iterative Learning Control. CoRR abs/2102.13478 (2021) - [i75]Xinyi Chen, Udaya Ghai, Elad Hazan, Alexandre Megretski:
Robust Online Control with Model Misspecification. CoRR abs/2107.07732 (2021) - [i74]Nataly Brukhim, Elad Hazan, Karan Singh:
A Boosting Approach to Reinforcement Learning. CoRR abs/2108.09767 (2021) - [i73]Xinyi Chen, Edgar Minasyan, Jason D. Lee, Elad Hazan:
Provable Regret Bounds for Deep Online Learning and Control. CoRR abs/2110.07807 (2021) - [i72]Daniel Suo, Cyril Zhang, Paula Gradu, Udaya Ghai, Xinyi Chen, Edgar Minasyan, Naman Agarwal, Karan Singh, Julienne LaChance, Tom Zajdel, Manuel Schottdorf, Daniel J. Cohen, Elad Hazan:
Machine Learning for Mechanical Ventilation Control (Extended Abstract). CoRR abs/2111.10434 (2021) - 2020
- [c90]Udaya Ghai, Elad Hazan, Yoram Singer:
Exponentiated Gradient Meets Gradient Descent. ALT 2020: 386-407 - [c89]Elad Hazan, Sham M. Kakade, Karan Singh:
The Nonstochastic Control Problem. ALT 2020: 408-421 - [c88]Mark Braverman, Elad Hazan, Max Simchowitz, Blake E. Woodworth:
The Gradient Complexity of Linear Regression. COLT 2020: 627-647 - [c87]Elad Hazan, Edgar Minasyan:
Faster Projection-free Online Learning. COLT 2020: 1877-1893 - [c86]Max Simchowitz, Karan Singh, Elad Hazan:
Improper Learning for Non-Stochastic Control. COLT 2020: 3320-3436 - [c85]Xinyi Chen, Naman Agarwal, Elad Hazan, Cyril Zhang, Yi Zhang:
Extreme Tensoring for Low-Memory Preconditioning. ICLR 2020 - [c84]Naman Agarwal, Nataly Brukhim, Elad Hazan, Zhou Lu:
Boosting for Control of Dynamical Systems. ICML 2020: 96-103 - [c83]Nataly Brukhim, Xinyi Chen, Elad Hazan, Shay Moran:
Online Agnostic Boosting via Regret Minimization. NeurIPS 2020 - [c82]Paula Gradu, John Hallman, Elad Hazan:
Non-Stochastic Control with Bandit Feedback. NeurIPS 2020 - [c81]Orestis Plevrakis, Elad Hazan:
Geometric Exploration for Online Control. NeurIPS 2020 - [i71]Max Simchowitz, Karan Singh, Elad Hazan:
Improper Learning for Non-Stochastic Control. CoRR abs/2001.09254 (2020) - [i70]Elad Hazan, Edgar Minasyan:
Faster Projection-free Online Learning. CoRR abs/2001.11568 (2020) - [i69]Noga Alon, Alon Gonen, Elad Hazan, Shay Moran:
Boosting Simple Learners. CoRR abs/2001.11704 (2020) - [i68]Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, Cyril Zhang:
Disentangling Adaptive Gradient Methods from Learning Rates. CoRR abs/2002.11803 (2020) - [i67]Nataly Brukhim, Xinyi Chen, Elad Hazan, Shay Moran:
Online Agnostic Boosting via Regret Minimization. CoRR abs/2003.01150 (2020) - [i66]Paula Gradu, Elad Hazan, Edgar Minasyan:
Adaptive Regret for Control of Time-Varying Dynamics. CoRR abs/2007.04393 (2020) - [i65]Xinyi Chen, Elad Hazan:
Black-Box Control for Linear Dynamical Systems. CoRR abs/2007.06650 (2020) - [i64]Nataly Brukhim, Elad Hazan:
Online Boosting with Bandit Feedback. CoRR abs/2007.11975 (2020) - [i63]Paula Gradu, John Hallman, Elad Hazan:
Non-Stochastic Control with Bandit Feedback. CoRR abs/2008.05523 (2020) - [i62]Orestis Plevrakis, Elad Hazan:
Geometric Exploration for Online Control. CoRR abs/2010.13178 (2020) - [i61]Udaya Ghai, David Snyder, Anirudha Majumdar, Elad Hazan:
Generating Adversarial Disturbances for Controller Verification. CoRR abs/2012.06695 (2020)
2010 – 2019
- 2019
- [c80]Brian Bullins, Elad Hazan, Adam Kalai, Roi Livni:
Generalize Across Tasks: Efficient Algorithms for Linear Representation Learning. ALT 2019: 235-246 - [c79]Naman Agarwal, Alon Gonen, Elad Hazan:
Learning in Non-convex Games with an Optimization Oracle. COLT 2019: 18-29 - [c78]Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, Yi Zhang:
Efficient Full-Matrix Adaptive Regularization. ICML 2019: 102-110 - [c77]Naman Agarwal, Brian Bullins, Elad Hazan, Sham M. Kakade, Karan Singh:
Online Control with Adversarial Disturbances. ICML 2019: 111-119 - [c76]Elad Hazan, Sham M. Kakade, Karan Singh, Abby Van Soest:
Provably Efficient Maximum Entropy Exploration. ICML 2019: 2681-2691 - [c75]Alon Gonen, Elad Hazan, Shay Moran:
Private Learning Implies Online Learning: An Efficient Reduction. NeurIPS 2019: 8699-8709 - [c74]Naman Agarwal, Elad Hazan, Karan Singh:
Logarithmic Regret for Online Control. NeurIPS 2019: 10175-10184 - [i60]Udaya Ghai, Elad Hazan, Yoram Singer:
Exponentiated Gradient Meets Gradient Descent. CoRR abs/1902.01903 (2019) - [i59]Xinyi Chen, Naman Agarwal, Elad Hazan, Cyril Zhang, Yi Zhang:
Extreme Tensoring for Low-Memory Preconditioning. CoRR abs/1902.04620 (2019) - [i58]Naman Agarwal, Brian Bullins, Elad Hazan, Sham M. Kakade, Karan Singh:
Online Control with Adversarial Disturbances. CoRR abs/1902.08721 (2019) - [i57]Alon Gonen, Elad Hazan, Shay Moran:
Private Learning Implies Online Learning: An Efficient Reduction. CoRR abs/1905.11311 (2019) - [i56]Naman Agarwal, Nataly Brukhim, Elad Hazan, Zhou Lu:
Boosting for Dynamical Systems. CoRR abs/1906.08720 (2019) - [i55]Elad Hazan:
Lecture Notes: Optimization for Machine Learning. CoRR abs/1909.03550 (2019) - [i54]Naman Agarwal, Elad Hazan, Karan Singh:
Logarithmic Regret for Online Control. CoRR abs/1909.05062 (2019) - [i53]Elad Hazan:
Introduction to Online Convex Optimization. CoRR abs/1909.05207 (2019) - [i52]Mark Braverman, Elad Hazan, Max Simchowitz, Blake E. Woodworth:
The gradient complexity of linear regression. CoRR abs/1911.02212 (2019) - [i51]Elad Hazan, Sham M. Kakade, Karan Singh:
The Nonstochastic Control Problem. CoRR abs/1911.12178 (2019) - 2018
- [c73]Naman Agarwal, Elad Hazan:
Lower Bounds for Higher-Order Convex Optimization. COLT 2018: 774-792 - [c72]Elad Hazan, Roi Livni:
Open problem: Improper learning of mixtures of Gaussians. COLT 2018: 3399-3402 - [c71]Sanjeev Arora, Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, Yi Zhang:
Towards Provable Control for Unknown Linear Dynamical Systems. ICLR (Workshop) 2018 - [c70]Elad Hazan, Adam R. Klivans, Yang Yuan:
Hyperparameter optimization: a spectral approach. ICLR (Poster) 2018 - [c69]Sanjeev Arora, Nadav Cohen, Elad Hazan:
On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization. ICML 2018: 244-253 - [c68]Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, Yi Zhang:
Spectral Filtering for General Linear Dynamical Systems. NeurIPS 2018: 4639-4648 - [c67]Elad Hazan, Wei Hu, Yuanzhi Li, Zhiyuan Li:
Online Improper Learning with an Approximation Oracle. NeurIPS 2018: 5657-5665 - [c66]Scott Aaronson, Xinyi Chen, Elad Hazan, Satyen Kale, Ashwin Nayak:
Online Learning of Quantum States. NeurIPS 2018: 8976-8986 - [i50]Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, Yi Zhang:
Spectral Filtering for General Linear Dynamical Systems. CoRR abs/1802.03981 (2018) - [i49]Sanjeev Arora, Nadav Cohen, Elad Hazan:
On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization. CoRR abs/1802.06509 (2018) - [i48]Scott Aaronson, Xinyi Chen, Elad Hazan, Ashwin Nayak:
Online Learning of Quantum States. CoRR abs/1802.09025 (2018) - [i47]Elad Hazan, Wei Hu, Yuanzhi Li, Zhiyuan Li:
Online Improper Learning with an Approximation Oracle. CoRR abs/1804.07837 (2018) - [i46]Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, Yi Zhang:
The Case for Full-Matrix Adaptive Regularization. CoRR abs/1806.02958 (2018) - [i45]Alon Gonen, Elad Hazan:
Learning in Non-convex Games with an Optimization Oracle. CoRR abs/1810.07362 (2018) - [i44]Elad Hazan, Sham M. Kakade, Karan Singh, Abby Van Soest:
Provably Efficient Maximum Entropy Exploration. CoRR abs/1812.02690 (2018) - 2017
- [j23]Naman Agarwal, Brian Bullins, Elad Hazan:
Second-Order Stochastic Optimization for Machine Learning in Linear Time. J. Mach. Learn. Res. 18: 116:1-116:40 (2017) - [j22]Elad Hazan, Satyen Kale, Shai Shalev-Shwartz:
Near-Optimal Algorithms for Online Matrix Prediction. SIAM J. Comput. 46(2): 744-773 (2017) - [c65]Elad Hazan, Karan Singh, Cyril Zhang:
Efficient Regret Minimization in Non-Convex Games. ICML 2017: 1433-1441 - [c64]Zeyuan Allen-Zhu, Elad Hazan, Wei Hu, Yuanzhi Li:
Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls. NIPS 2017: 6191-6200 - [c63]Elad Hazan, Karan Singh, Cyril Zhang:
Learning Linear Dynamical Systems via Spectral Filtering. NIPS 2017: 6702-6712 - [c62]Naman Agarwal, Zeyuan Allen Zhu, Brian Bullins, Elad Hazan, Tengyu Ma:
Finding approximate local minima faster than gradient descent. STOC 2017: 1195-1199 - [i43]Elad Hazan, Adam R. Klivans, Yang Yuan:
Hyperparameter Optimization: A Spectral Approach. CoRR abs/1706.00764 (2017) - [i42]Elad Hazan, Karan Singh, Cyril Zhang:
Efficient Regret Minimization in Non-Convex Games. CoRR abs/1708.00075 (2017) - [i41]Zeyuan Allen-Zhu, Elad Hazan, Wei Hu, Yuanzhi Li:
Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls. CoRR abs/1708.02105 (2017) - [i40]Naman Agarwal, Elad Hazan:
Lower Bounds for Higher-Order Convex Optimization. CoRR abs/1710.10329 (2017) - [i39]Elad Hazan, Karan Singh, Cyril Zhang:
Learning Linear Dynamical Systems via Spectral Filtering. CoRR abs/1711.00946 (2017) - 2016
- [j21]Elad Hazan:
Introduction to Online Convex Optimization. Found. Trends Optim. 2(3-4): 157-325 (2016) - [j20]Elad Hazan, Zohar S. Karnin:
Volumetric Spanners: An Efficient Exploration Basis for Learning. J. Mach. Learn. Res. 17: 119:1-119:34 (2016) - [j19]Elad Hazan, Satyen Kale, Manfred K. Warmuth:
Learning rotations with little regret. Mach. Learn. 104(1): 129-148 (2016) - [j18]Dan Garber, Elad Hazan:
Sublinear time algorithms for approximate semidefinite programming. Math. Program. 158(1-2): 329-361 (2016) - [j17]Elad Hazan, Tomer Koren:
A linear-time algorithm for trust region problems. Math. Program. 158(1-2): 363-381 (2016) - [j16]Dan Garber, Elad Hazan:
A Linearly Convergent Variant of the Conditional Gradient Algorithm under Strong Convexity, with Applications to Online and Stochastic Optimization. SIAM J. Optim. 26(3): 1493-1528 (2016) - [c61]Elad Hazan, Tomer Koren, Roi Livni, Yishay Mansour:
Online Learning with Low Rank Experts. COLT 2016: 1096-1114 - [c60]Zeyuan Allen Zhu, Elad Hazan:
Variance Reduction for Faster Non-Convex Optimization. ICML 2016: 699-707 - [c59]Elad Hazan, Haipeng Luo:
Variance-Reduced and Projection-Free Stochastic Optimization. ICML 2016: 1263-1271 - [c58]Elad Hazan, Kfir Yehuda Levy, Shai Shalev-Shwartz:
On Graduated Optimization for Stochastic Non-Convex Problems. ICML 2016: 1833-1841 - [c57]Jacob D. Abernethy, Elad Hazan:
Faster Convex Optimization: Simulated Annealing with an Efficient Universal Barrier. ICML 2016: 2520-2528 - [c56]Dan Garber, Elad Hazan, Chi Jin, Sham M. Kakade, Cameron Musco, Praneeth Netrapalli, Aaron Sidford:
Faster Eigenvector Computation via Shift-and-Invert Preconditioning. ICML 2016: 2626-2634 - [c55]Zeyuan Allen Zhu, Elad Hazan:
Optimal Black-Box Reductions Between Optimization Objectives. NIPS 2016: 1606-1614 - [c54]Elad Hazan, Tengyu Ma:
A Non-generative Framework and Convex Relaxations for Unsupervised Learning. NIPS 2016: 3306-3314 - [c53]Brian Bullins, Elad Hazan, Tomer Koren:
The Limits of Learning with Missing Data. NIPS 2016: 3495-3503 - [c52]Elad Hazan, Tomer Koren:
The computational power of optimization in online learning. STOC 2016: 128-141 - [i38]Elad Hazan, Haipeng Luo:
Variance-Reduced and Projection-Free Stochastic Optimization. CoRR abs/1602.02101 (2016) - [i37]Naman Agarwal, Brian Bullins, Elad Hazan:
Second Order Stochastic Optimization in Linear Time. CoRR abs/1602.03943 (2016) - [i36]Elad Hazan, Yuanzhi Li:
An optimal algorithm for bandit convex optimization. CoRR abs/1603.04350 (2016) - [i35]Zeyuan Allen Zhu, Elad Hazan:
Optimal Black-Box Reductions Between Optimization Objectives. CoRR abs/1603.05642 (2016) - [i34]Zeyuan Allen Zhu, Elad Hazan:
Variance Reduction for Faster Non-Convex Optimization. CoRR abs/1603.05643 (2016) - [i33]Elad Hazan, Tomer Koren, Roi Livni, Yishay Mansour:
Online Learning with Low Rank Experts. CoRR abs/1603.06352 (2016) - [i32]Dan Garber, Elad Hazan, Chi Jin, Sham M. Kakade, Cameron Musco, Praneeth Netrapalli, Aaron Sidford:
Faster Eigenvector Computation via Shift-and-Invert Preconditioning. CoRR abs/1605.08754 (2016) - [i31]Elad Hazan, Tengyu Ma:
A Non-generative Framework and Convex Relaxations for Unsupervised Learning. CoRR abs/1610.01132 (2016) - [i30]Naman Agarwal, Zeyuan Allen Zhu, Brian Bullins, Elad Hazan, Tengyu Ma:
Finding Approximate Local Minima for Nonconvex Optimization in Linear Time. CoRR abs/1611.01146 (2016) - 2015
- [j15]Aharon Ben-Tal, Elad Hazan, Tomer Koren, Shie Mannor:
Oracle-Based Robust Optimization via Online Learning. Oper. Res. 63(3): 628-638 (2015) - [c51]Peter Grünwald, Elad Hazan:
Conference on Learning Theory 2015: Preface. COLT 2015: 1-3 - [c50]Elad Hazan, Roi Livni, Yishay Mansour:
Classification with Low Rank and Missing Data. ICML 2015: 257-266 - [c49]Dan Garber, Elad Hazan:
Faster Rates for the Frank-Wolfe Method over Strongly-Convex Sets. ICML 2015: 541-549 - [c48]Dan Garber, Elad Hazan, Tengyu Ma:
Online Learning of Eigenvectors. ICML 2015: 560-568 - [c47]Oren Anava, Elad Hazan, Assaf Zeevi:
Online Time Series Prediction with Missing Data. ICML 2015: 2191-2199 - [c46]Oren Anava, Elad Hazan, Shie Mannor:
Online Learning for Adversaries with Memory: Price of Past Mistakes. NIPS 2015: 784-792 - [c45]Elad Hazan, Kfir Y. Levy, Shai Shalev-Shwartz:
Beyond Convexity: Stochastic Quasi-Convex Optimization. NIPS 2015: 1594-1602 - [c44]Alina Beygelzimer, Elad Hazan, Satyen Kale, Haipeng Luo:
Online Gradient Boosting. NIPS 2015: 2458-2466 - [e1]Peter Grünwald, Elad Hazan, Satyen Kale:
Proceedings of The 28th Conference on Learning Theory, COLT 2015, Paris, France, July 3-6, 2015. JMLR Workshop and Conference Proceedings 40, JMLR.org 2015 [contents] - [i29]Elad Hazan, Roi Livni, Yishay Mansour:
Classification with Low Rank and Missing Data. CoRR abs/1501.03273 (2015) - [i28]Elad Hazan, Kfir Y. Levy, Shai Shalev-Shwartz:
On Graduated Optimization for Stochastic Non-Convex Problems. CoRR abs/1503.03712 (2015) - [i27]Elad Hazan, Tomer Koren:
The Computational Power of Optimization in Online Learning. CoRR abs/1504.02089 (2015) - [i26]Alina Beygelzimer, Elad Hazan, Satyen Kale, Haipeng Luo:
Online Gradient Boosting. CoRR abs/1506.04820 (2015) - [i25]Elad Hazan, Kfir Y. Levy, Shai Shalev-Shwartz:
Beyond Convexity: Stochastic Quasi-Convex Optimization. CoRR abs/1507.02030 (2015) - [i24]Jacob D. Abernethy, Elad Hazan:
Faster Convex Optimization: Simulated Annealing with an Efficient Universal Barrier. CoRR abs/1507.02528 (2015) - [i23]Dan Garber, Elad Hazan:
Fast and Simple PCA via Convex Optimization. CoRR abs/1509.05647 (2015) - 2014
- [j14]Elad Hazan, Satyen Kale:
Beyond the regret minimization barrier: optimal algorithms for stochastic strongly-convex optimization. J. Mach. Learn. Res. 15(1): 2489-2512 (2014) - [c43]Elad Hazan, Tomer Koren, Kfir Y. Levy:
Logistic Regression: Tight Bounds for Stochastic and Online Optimization. COLT 2014: 197-209 - [c42]Elad Hazan, Zohar Shay Karnin, Raghu Meka:
Volumetric Spanners: an Efficient Exploration Basis for Learning. COLT 2014: 408-422 - [c41]Zohar Shay Karnin, Elad Hazan:
Hard-Margin Active Linear Regression. ICML 2014: 883-891 - [c40]Elad Hazan, Kfir Y. Levy:
Bandit Convex Optimization: Towards Tight Bounds. NIPS 2014: 784-792 - [c39]Ofer Dekel, Elad Hazan, Tomer Koren:
The Blinded Bandit: Learning with Adaptive Feedback. NIPS 2014: 1610-1618 - [i22]Elad Hazan, Tomer Koren:
A Linear-Time Algorithm for Trust Region Problems. CoRR abs/1401.6757 (2014) - [i21]Aharon Ben-Tal, Elad Hazan, Tomer Koren, Shie Mannor:
Oracle-Based Robust Optimization via Online Learning. CoRR abs/1402.6361 (2014) - [i20]Elad Hazan, Tomer Koren, Kfir Y. Levy:
Logistic Regression: Tight Bounds for Stochastic and Online Optimization. CoRR abs/1405.3843 (2014) - [i19]Dan Garber, Elad Hazan:
Faster Rates for the Frank-Wolfe Method over Strongly-Convex Sets. CoRR abs/1406.1305 (2014) - 2013
- [j13]Dan Garber, Elad Hazan:
Adaptive Universal Linear Filtering. IEEE Trans. Signal Process. 61(7): 1595-1604 (2013) - [c38]Oren Anava, Elad Hazan, Shie Mannor, Ohad Shamir:
Online Learning for Time Series Prediction. COLT 2013: 172-184 - [c37]Dan Garber, Elad Hazan:
Playing Non-linear Games with Linear Oracles. FOCS 2013: 420-428 - [c36]Ofer Dekel, Elad Hazan:
Better Rates for Any Adversarial Deterministic MDP. ICML (3) 2013: 675-683 - [i18]Dan Garber, Elad Hazan:
A Polynomial Time Conditional Gradient Algorithm with Applications to Online and Stochastic Optimization. CoRR abs/1301.4666 (2013) - [i17]Oren Anava, Elad Hazan, Shie Mannor, Ohad Shamir:
Online Learning for Time Series Prediction. CoRR abs/1302.6927 (2013) - [i16]Oren Anava, Elad Hazan, Shie Mannor:
Online Learning for Loss Functions with Memory and Applications to Statistical Arbitrage. CoRR abs/1302.6937 (2013) - [i15]Elad Hazan, Zohar Shay Karnin, Raghu Meka:
Volumetric Spanners and their Applications to Machine Learning. CoRR abs/1312.6214 (2013) - 2012
- [j12]Kenneth L. Clarkson, Elad Hazan, David P. Woodruff:
Sublinear optimization for machine learning. J. ACM 59(5): 23:1-23:49 (2012) - [j11]Elad Hazan, Satyen Kale:
Online submodular minimization. J. Mach. Learn. Res. 13: 2903-2922 (2012) - [j10]Jacob D. Abernethy, Elad Hazan, Alexander Rakhlin:
Interior-Point Methods for Full-Information and Bandit Online Learning. IEEE Trans. Inf. Theory 58(7): 4164-4175 (2012) - [j9]Sanjeev Arora, Elad Hazan, Satyen Kale:
The Multiplicative Weights Update Method: a Meta-Algorithm and Applications. Theory Comput. 8(1): 121-164 (2012) - [c35]Elad Hazan, Satyen Kale:
Projection-free Online Learning. ICML 2012 - [c34]Elad Hazan, Tomer Koren:
Linear Regression with Limited Observation. ICML 2012 - [c33]Elad Hazan, Zohar Shay Karnin:
A Polylog Pivot Steps Simplex Algorithm for Classification. NIPS 2012: 638-646 - [c32]Elad Hazan, Sham M. Kakade:
(weak) Calibration is Computationally Hard. COLT 2012: 3.1-3.10 - [c31]Elad Hazan, Satyen Kale, Shai Shalev-Shwartz:
Near-Optimal Algorithms for Online Matrix Prediction. COLT 2012: 38.1-38.13 - [i14]Elad Hazan, Sham M. Kakade:
(weak) Calibration is Computationally Hard. CoRR abs/1202.4478 (2012) - [i13]Elad Hazan, Satyen Kale, Shai Shalev-Shwartz:
Near-Optimal Algorithms for Online Matrix Prediction. CoRR abs/1204.0136 (2012) - [i12]Elad Hazan, Satyen Kale:
Projection-free Online Learning. CoRR abs/1206.4657 (2012) - [i11]Elad Hazan, Tomer Koren:
Linear Regression with Limited Observation. CoRR abs/1206.4678 (2012) - [i10]Dan Garber, Elad Hazan:
Almost Optimal Sublinear Time Algorithm for Semidefinite Programming. CoRR abs/1208.5211 (2012) - 2011
- [j8]Elad Hazan, Satyen Kale:
Better Algorithms for Benign Bandits. J. Mach. Learn. Res. 12: 1287-1311 (2011) - [j7]John C. Duchi, Elad Hazan, Yoram Singer:
Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn. Res. 12: 2121-2159 (2011) - [j6]Elad Hazan, Robert Krauthgamer:
How Hard Is It to Approximate the Best Nash Equilibrium? SIAM J. Comput. 40(1): 79-91 (2011) - [c30]Elad Hazan, Satyen Kale:
Newtron: an Efficient Bandit algorithm for Online Multiclass Prediction. NIPS 2011: 891-899 - [c29]Dan Garber, Elad Hazan:
Approximating Semidefinite Programs in Sublinear Time. NIPS 2011: 1080-1088 - [c28]Elad Hazan, Tomer Koren, Nati Srebro:
Beating SGD: Learning SVMs in Sublinear Time. NIPS 2011: 1233-1241 - [c27]Jacob D. Abernethy, Peter L. Bartlett, Elad Hazan:
Blackwell Approachability and No-Regret Learning are Equivalent. COLT 2011: 27-46 - [c26]Elad Hazan, Satyen Kale:
Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization. COLT 2011: 421-436 - [c25]Elad Hazan, Satyen Kale:
A simple multi-armed bandit algorithm with optimal variation-bounded regret. COLT 2011: 817-820 - [i9]Elad Hazan, Tomer Koren:
Optimal Algorithms for Ridge and Lasso Regression with Partially Observed Attributes. CoRR abs/1108.4559 (2011) - [i8]Dan Garber, Elad Hazan:
Universal MMSE Filtering With Logarithmic Adaptive Regret. CoRR abs/1111.1136 (2011) - 2010
- [j5]Elad Hazan, Satyen Kale:
Extracting certainty from uncertainty: regret bounded by variation in costs. Mach. Learn. 80(2-3): 165-188 (2010) - [j4]Sanjeev Arora, Elad Hazan, Satyen Kale:
O(sqrt(log(n)) Approximation to SPARSEST CUT in Õ(n2) Time. SIAM J. Comput. 39(5): 1748-1771 (2010) - [c24]Elad Hazan, Satyen Kale, Manfred K. Warmuth:
Learning Rotations with Little Regret. COLT 2010: 144-154 - [c23]John C. Duchi, Elad Hazan, Yoram Singer:
Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. COLT 2010: 257-269 - [c22]Elad Hazan, Satyen Kale, Manfred K. Warmuth:
On-line Variance Minimization in O(n2) per Trial? COLT 2010: 314-315 - [c21]Kenneth L. Clarkson, Elad Hazan, David P. Woodruff:
Sublinear Optimization for Machine Learning. FOCS 2010: 449-457 - [i7]Kenneth L. Clarkson, Elad Hazan, David P. Woodruff:
Sublinear Optimization for Machine Learning. CoRR abs/1010.4408 (2010) - [i6]Jacob D. Abernethy, Peter L. Bartlett, Elad Hazan:
Blackwell Approachability and Low-Regret Learning are Equivalent. CoRR abs/1011.1936 (2010)
2000 – 2009
- 2009
- [c20]Elad Hazan, C. Seshadhri:
Efficient learning algorithms for changing environments. ICML 2009: 393-400 - [c19]Elad Hazan, Satyen Kale:
Beyond Convexity: Online Submodular Minimization. NIPS 2009: 700-708 - [c18]Elad Hazan, Satyen Kale:
On Stochastic and Worst-case Models for Investing. NIPS 2009: 709-717 - [c17]Elad Hazan, Satyen Kale:
Better algorithms for benign bandits. SODA 2009: 38-47 - [c16]Elad Hazan, Robert Krauthgamer:
How hard is it to approximate the best Nash equilibrium? SODA 2009: 720-727 - 2008
- [c15]Elad Hazan, Satyen Kale:
Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs. COLT 2008: 57-68 - [c14]Jacob D. Abernethy, Elad Hazan, Alexander Rakhlin:
Competing in the Dark: An Efficient Algorithm for Bandit Linear Optimization. COLT 2008: 263-274 - [c13]Elad Hazan:
Sparse Approximate Solutions to Semidefinite Programs. LATIN 2008: 306-316 - 2007
- [j3]Elad Hazan, Amit Agarwal, Satyen Kale:
Logarithmic regret algorithms for online convex optimization. Mach. Learn. 69(2-3): 169-192 (2007) - [c12]Elad Hazan, Nimrod Megiddo:
Online Learning with Prior Knowledge. COLT 2007: 499-513 - [c11]Peter L. Bartlett, Elad Hazan, Alexander Rakhlin:
Adaptive Online Gradient Descent. NIPS 2007: 65-72 - [c10]Elad Hazan, Satyen Kale:
Computational Equivalence of Fixed Points and No Regret Algorithms, and Convergence to Equilibria. NIPS 2007: 625-632 - [i5]Elad Hazan, C. Seshadhri:
Adaptive Algorithms for Online Decision Problems. Electron. Colloquium Comput. Complex. TR07 (2007) - 2006
- [j2]Elad Hazan, Shmuel Safra, Oded Schwartz:
On the complexity of approximating k-set packing. Comput. Complex. 15(1): 20-39 (2006) - [j1]Eran Halperin, Elad Hazan:
HAPLOFREQ-Estimating Haplotype Frequencies Efficiently. J. Comput. Biol. 13(2): 481-500 (2006) - [c9]Sanjeev Arora, Elad Hazan, Satyen Kale:
A Fast Random Sampling Algorithm for Sparsifying Matrices. APPROX-RANDOM 2006: 272-279 - [c8]Elad Hazan, Adam Kalai, Satyen Kale, Amit Agarwal:
Logarithmic Regret Algorithms for Online Convex Optimization. COLT 2006: 499-513 - [c7]Amit Agarwal, Elad Hazan, Satyen Kale, Robert E. Schapire:
Algorithms for portfolio management based on the Newton method. ICML 2006: 9-16 - [i4]Elad Hazan:
Approximate Convex Optimization by Online Game Playing. CoRR abs/cs/0610119 (2006) - [i3]Amit Agarwal, Elad Hazan:
Efficient Algorithms for Online Game Playing and Universal Portfolio Management. Electron. Colloquium Comput. Complex. TR06 (2006) - 2005
- [c6]Sanjeev Arora, Eli Berger, Elad Hazan, Guy Kindler, Muli Safra:
On Non-Approximability for Quadratic Programs. FOCS 2005: 206-215 - [c5]Sanjeev Arora, Elad Hazan, Satyen Kale:
Fast Algorithms for Approximate Semide.nite Programming using the Multiplicative Weights Update Method. FOCS 2005: 339-348 - [c4]Satyen Kale, Elad Hazan, Fengyun Cao, Jaswinder Pal Singh:
Analysis and Algorithms for Content-Based Event Matching. ICDCS Workshops 2005: 363-369 - [c3]Eran Halperin, Elad Hazan:
HAPLOFREQ - Estimating Haplotype Frequencies E.ciently. RECOMB 2005: 553-568 - [i2]Sanjeev Arora, Eli Berger, Elad Hazan, Guy Kindler, Muli Safra:
On Non-Approximability for Quadratic Programs. Electron. Colloquium Comput. Complex. TR05 (2005) - 2004
- [c2]Sanjeev Arora, Elad Hazan, Satyen Kale:
0(sqrt (log n)) Approximation to SPARSEST CUT in Õ(n2) Time. FOCS 2004: 238-247 - 2003
- [c1]Elad Hazan, Shmuel Safra, Oded Schwartz:
On the Complexity of Approximating k-Dimensional Matching. RANDOM-APPROX 2003: 83-97 - [i1]Elad Hazan, Shmuel Safra, Oded Schwartz:
On the Hardness of Approximating k-Dimensional Matching. Electron. Colloquium Comput. Complex. TR03 (2003)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-14 23:28 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint