default search action
Giovanni Montana
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j43]Alex Beeson, Giovanni Montana:
Balancing policy constraint and ensemble size in uncertainty-based offline reinforcement learning. Mach. Learn. 113(1): 443-488 (2024) - [j42]Charles A. Hepburn, Giovanni Montana:
Model-based trajectory stitching for improved behavioural cloning and its applications. Mach. Learn. 113(2): 647-674 (2024) - [j41]Mianchu Wang, Yue Jin, Giovanni Montana:
Goal-conditioned offline reinforcement learning through state space partitioning. Mach. Learn. 113(5): 2435-2465 (2024) - [j40]Mianchu Wang, Rui Yang, Xi Chen, Hao Sun, Meng Fang, Giovanni Montana:
GOPlan: Goal-conditioned Offline Reinforcement Learning by Planning with Learned Models. Trans. Mach. Learn. Res. 2024 (2024) - [c35]Sharlin Utke, Jeremie Houssineau, Giovanni Montana:
Embracing Relational Reasoning in Multi-Agent Actor-Critic. AAMAS 2024: 2525-2527 - [c34]Yuanyi Zhu, Maria Liakata, Giovanni Montana:
A Multi-Task Transformer Model for Fine-grained Labelling of Chest X-Ray Reports. LREC/COLING 2024: 862-875 - [c33]David Ireland, Giovanni Montana:
REValueD: Regularised Ensemble Value-Decomposition for Factorisable Markov Decision Processes. ICLR 2024 - [i45]David Ireland, Giovanni Montana:
REValueD: Regularised Ensemble Value-Decomposition for Factorisable Markov Decision Processes. CoRR abs/2401.08850 (2024) - [i44]Charles A. Hepburn, Yue Jin, Giovanni Montana:
State-Constrained Offline Reinforcement Learning. CoRR abs/2405.14374 (2024) - [i43]Alex Beeson, David Ireland, Giovanni Montana:
An Investigation of Offline Reinforcement Learning in Factorisable Action Spaces. CoRR abs/2411.11088 (2024) - [i42]Ting Zhu, Yue Jin, Jeremie Houssineau, Giovanni Montana:
Mitigating Relative Over-Generalization in Multi-Agent Reinforcement Learning. CoRR abs/2411.11099 (2024) - 2023
- [j39]Emanuele Pesce, Giovanni Montana:
Learning multi-agent coordination through connectivity-driven communication. Mach. Learn. 112(2): 483-514 (2023) - [j38]Adam R. Brentnall, Emma C. Atakpa, Harry Hill, Ruggiero Santeramo, Celeste Damiani, Jack Cuzick, Giovanni Montana, Stephen W. Duffy:
An optimization framework to guide the choice of thresholds for risk-based cancer screening. npj Digit. Medicine 6 (2023) - [j37]Mingqi Gao, Jungong Han, Feng Zheng, James J. Q. Yu, Giovanni Montana:
Video Object Segmentation using Point-based Memory Network. Pattern Recognit. 134: 109073 (2023) - [j36]Mingqi Gao, Jinyu Yang, Jungong Han, Ke Lu, Feng Zheng, Giovanni Montana:
Decoupling Multimodal Transformers for Referring Video Object Segmentation. IEEE Trans. Circuits Syst. Video Technol. 33(9): 4518-4528 (2023) - [j35]Nick Byrne, James R. Clough, Israel Valverde, Giovanni Montana, Andrew P. King:
A Persistent Homology-Based Topological Loss for CNN-Based Multiclass Segmentation of CMR. IEEE Trans. Medical Imaging 42(1): 3-14 (2023) - [c32]George Watkins, Giovanni Montana, Jürgen Branke:
Generating a Graph Colouring Heuristic with Deep Q-Learning and Graph Neural Networks. LION 2023: 491-505 - [i41]Mianchu Wang, Yue Jin, Giovanni Montana:
Goal-conditioned Offline Reinforcement Learning through State Space Partitioning. CoRR abs/2303.09367 (2023) - [i40]Alex Beeson, Giovanni Montana:
Balancing policy constraint and ensemble size in uncertainty-based offline reinforcement learning. CoRR abs/2303.14716 (2023) - [i39]George Watkins, Giovanni Montana, Jürgen Branke:
Generating a Graph Colouring Heuristic with Deep Q-Learning and Graph Neural Networks. CoRR abs/2304.04051 (2023) - 2022
- [j34]Ozsel Kilinc, Giovanni Montana:
Reinforcement learning for robotic manipulation using simulated locomotion demonstrations. Mach. Learn. 111(2): 465-486 (2022) - [c31]David Ireland, Giovanni Montana:
LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation. ICML 2022: 9622-9638 - [c30]Matthew MacPherson, Keerthini Muthuswamy, Ashik Amlani, Charles Hutchinson, Vicky Goh, Giovanni Montana:
Assessing the Performance of Automated Prediction and Ranking of Patient Age from Chest X-rays Against Clinicians. MICCAI (8) 2022: 255-265 - [i38]David Ireland, Giovanni Montana:
LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation. CoRR abs/2205.10106 (2022) - [i37]Matthew MacPherson, Keerthini Muthuswamy, Ashik Amlani, Charles Hutchinson, Vicky Goh, Giovanni Montana:
Assessing the Performance of Automated Prediction and Ranking of Patient Age from Chest X-rays Against Clinicians. CoRR abs/2207.01302 (2022) - [i36]Charles A. Hepburn, Giovanni Montana:
Model-based Trajectory Stitching for Improved Offline Reinforcement Learning. CoRR abs/2211.11603 (2022) - [i35]Alex Beeson, Giovanni Montana:
Improving TD3-BC: Relaxed Policy Constraint for Offline Learning and Stable Online Fine-Tuning. CoRR abs/2211.11802 (2022) - [i34]Charles A. Hepburn, Giovanni Montana:
Model-based trajectory stitching for improved behavioural cloning and its applications. CoRR abs/2212.04280 (2022) - 2021
- [c29]Henry Charlesworth, Giovanni Montana:
Solving Challenging Dexterous Manipulation Tasks With Trajectory Optimisation and Reinforcement Learning. ICML 2021: 1496-1506 - [i33]Aydan Gasimova, Giovanni Montana, Daniel Rueckert:
Automated Knee X-ray Report Generation. CoRR abs/2105.10702 (2021) - [i32]Nick Byrne, James R. Clough, Isra Valverde, Giovanni Montana, Andrew P. King:
A persistent homology-based topological loss for CNN-based multi-class segmentation of CMR. CoRR abs/2107.12689 (2021) - 2020
- [j33]Emanuele Pesce, Giovanni Montana:
Improving coordination in small-scale multi-agent deep reinforcement learning through memory-driven communication. Mach. Learn. 109(9-10): 1727-1747 (2020) - [j32]Nicoló Savioli, Enrico Grisan, Silvia Visentin, Erich Cosmi, Giovanni Montana, Pablo Lamata:
Real-time diameter of the fetal aorta from ultrasound. Neural Comput. Appl. 32(11): 6735-6744 (2020) - [c28]Nick Byrne, James R. Clough, Giovanni Montana, Andrew P. King:
A Persistent Homology-Based Topological Loss Function for Multi-class CNN Segmentation of Cardiac MRI. M&Ms and EMIDEC/STACOM@MICCAI 2020: 3-13 - [c27]Ksenia Sokolova, Gareth J. Barker, Giovanni Montana:
Convolutional neural-network-based ordinal regression for brain age prediction from MRI scans. Image Processing 2020: 113132B - [c26]Henry Charlesworth, Giovanni Montana:
PlanGAN: Model-based Planning With Sparse Rewards and Multiple Goals. NeurIPS 2020 - [i31]Emanuele Pesce, Giovanni Montana:
Connectivity-driven Communication in Multi-agent Reinforcement Learning through Diffusion Processes on Graphs. CoRR abs/2002.05233 (2020) - [i30]Saad Mohamad, Giovanni Montana:
Adaptive Experience Selection for Policy Gradient. CoRR abs/2002.06946 (2020) - [i29]Henry Charlesworth, Giovanni Montana:
PlanGAN: Model-based Planning With Sparse Rewards and Multiple Goals. CoRR abs/2006.00900 (2020) - [i28]Ozsel Kilinc, Giovanni Montana:
Follow the Object: Curriculum Learning for Manipulation Tasks with Imagined Goals. CoRR abs/2008.02066 (2020) - [i27]Nick Byrne, James R. Clough, Giovanni Montana, Andrew P. King:
A persistent homology-based topological loss function for multi-class CNN segmentation of cardiac MRI. CoRR abs/2008.09585 (2020) - [i26]Henry Charlesworth, Giovanni Montana:
Solving Challenging Dexterous Manipulation Tasks With Trajectory Optimisation and Reinforcement Learning. CoRR abs/2009.05104 (2020)
2010 – 2019
- 2019
- [j31]Emanuele Pesce, Samuel Withey, Petros-Pavlos Ypsilantis, Robert Bakewell, Vicky Goh, Giovanni Montana:
Learning to detect chest radiographs containing pulmonary lesions using visual attention networks. Medical Image Anal. 53: 26-38 (2019) - [c25]Briti Gangopadhyay, Siddartha Khastgir, Sumanta Dey, Pallab Dasgupta, Giovanni Montana, Paul A. Jennings:
Identification of Test Cases for Automated Driving Systems Using Bayesian Optimization. ITSC 2019: 1961-1967 - [c24]Nick Byrne, James R. Clough, Isra Valverde, Giovanni Montana, Andrew P. King:
Topology-Preserving Augmentation for CNN-Based Segmentation of Congenital Heart Defects from 3D Paediatric CMR. SUSI/PIPPI@MICCAI 2019: 181-188 - [i25]Emanuele Pesce, Giovanni Montana:
Improving Coordination in Multi-Agent Deep Reinforcement Learning through Memory-driven Communication. CoRR abs/1901.03887 (2019) - [i24]Zhana Kuncheva, Giovanni Montana:
Spectral Multi-scale Community Detection in Temporal Networks with an Application. CoRR abs/1901.10521 (2019) - [i23]Yang Hu, Giovanni Montana:
Skill Transfer in Deep Reinforcement Learning under Morphological Heterogeneity. CoRR abs/1908.05265 (2019) - [i22]Nick Byrne, James R. Clough, Isra Valverde, Giovanni Montana, Andrew P. King:
Topology-preserving augmentation for CNN-based segmentation of congenital heart defects from 3D paediatric CMR. CoRR abs/1908.08870 (2019) - [i21]Ozsel Kilinc, Yang Hu, Giovanni Montana:
Reinforcement Learning for Robotic Manipulation using Simulated Locomotion Demonstrations. CoRR abs/1910.07294 (2019) - 2018
- [j30]Dimosthenis Tsagkrasoulis, Giovanni Montana:
Random forest regression for manifold-valued responses. Pattern Recognit. Lett. 101: 6-13 (2018) - [j29]Ricardo Pio Monti, Christoforos Anagnostopoulos, Giovanni Montana:
Adaptive regularization for Lasso models in the context of nonstationary data streams. Stat. Anal. Data Min. 11(5): 237-247 (2018) - [c23]Nicoló Savioli, Silvia Visentin, Erich Cosmi, Enrico Grisan, Pablo Lamata, Giovanni Montana:
Temporal Convolution Networks for Real-Time Abdominal Fetal Aorta Analysis with Ultrasound. ICANN (2) 2018: 148-157 - [c22]Nicoló Savioli, Giovanni Montana, Pablo Lamata:
V-FCNN: Volumetric Fully Convolution Neural Network for Automatic Atrial Segmentation. STACOM@MICCAI 2018: 273-281 - [c21]Ruggiero Santeramo, Samuel Withey, Giovanni Montana:
Longitudinal Detection of Radiological Abnormalities with Time-Modulated LSTM. DLMIA/ML-CDS@MICCAI 2018: 326-333 - [c20]Mauro Annarumma, Giovanni Montana:
Deep metric learning for multi-labelled radiographs. SAC 2018: 34-37 - [c19]Nicoló Savioli, Miguel Silva Vieira, Pablo Lamata, Giovanni Montana:
Automated Segmentation on the Entire Cardiac Cycle Using a Deep Learning Work - Flow. SNAMS 2018: 153-158 - [i20]Nicoló Savioli, Silvia Visentin, Erich Cosmi, Enrico Grisan, Pablo Lamata, Giovanni Montana:
Temporal Convolution Networks for Real-Time Abdominal Fetal Aorta Analysis with Ultrasound. CoRR abs/1807.04056 (2018) - [i19]Ruggiero Santeramo, Samuel Withey, Giovanni Montana:
Longitudinal detection of radiological abnormalities with time-modulated LSTM. CoRR abs/1807.06144 (2018) - [i18]Nicoló Savioli, Giovanni Montana, Pablo Lamata:
V-FCNN: Volumetric Fully Convolution Neural Network For Automatic Atrial Segmentation. CoRR abs/1808.01944 (2018) - [i17]Nicoló Savioli, Miguel S. Vieira, Pablo Lamata, Giovanni Montana:
Automated segmentation on the entire cardiac cycle using a deep learning work-flow. CoRR abs/1809.01015 (2018) - [i16]Nicoló Savioli, Miguel Silva Vieira, Pablo Lamata, Giovanni Montana:
A Generative Adversarial Model for Right Ventricle Segmentation. CoRR abs/1810.03969 (2018) - [i15]Ozsel Kilinc, Giovanni Montana:
Multi-agent Deep Reinforcement Learning with Extremely Noisy Observations. CoRR abs/1812.00922 (2018) - 2017
- [j28]Ricardo Pio Monti, Romy Lorenz, Peter Hellyer, Robert Leech, Christoforos Anagnostopoulos, Giovanni Montana:
Decoding Time-Varying Functional Connectivity Networks via Linear Graph Embedding Methods. Frontiers Comput. Neurosci. 11: 14 (2017) - [j27]James H. Cole, Rudra P. K. Poudel, Dimosthenis Tsagkrasoulis, Matthan W. A. Caan, Claire J. Steves, Tim D. Spector, Giovanni Montana:
Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. NeuroImage 163: 115-124 (2017) - [c18]Zhana Kuncheva, Giovanni Montana:
Multi-scale Community Detection in Temporal Networks Using Spectral Graph Wavelets. PAP@PKDD/ECML 2017: 139-154 - [c17]Zhana Kuncheva, Michelle L. Krishnan, Giovanni Montana:
Exploring Brain Transcriptomic Patterns: A Topological Analysis Using Spatial Expression Networks. PSB 2017: 70-81 - [i14]Petros-Pavlos Ypsilantis, Giovanni Montana:
Learning what to look in chest X-rays with a recurrent visual attention model. CoRR abs/1701.06452 (2017) - [i13]Zhana Kuncheva, Giovanni Montana:
Multi-scale Community Detection in Temporal Networks Using Spectral Graph Wavelets. CoRR abs/1708.04060 (2017) - [i12]Emanuele Pesce, Petros-Pavlos Ypsilantis, Samuel Withey, Robert Bakewell, Vicky Goh, Giovanni Montana:
Learning to detect chest radiographs containing lung nodules using visual attention networks. CoRR abs/1712.00996 (2017) - [i11]Mauro Annarumma, Giovanni Montana:
Deep metric learning for multi-labelled radiographs. CoRR abs/1712.07682 (2017) - 2016
- [j26]Michael W. Berry, Jung Jin Lee, Giovanni Montana, Stefan Van Aelst, Ruben H. Zamar:
Special Issue on Advances in Data Mining and Robust Statistics. Comput. Stat. Data Anal. 93: 388-389 (2016) - [j25]Romy Lorenz, Ricardo Pio Monti, Inês R. Violante, Christoforos Anagnostopoulos, Aldo A. Faisal, Giovanni Montana, Robert Leech:
The Automatic Neuroscientist: A framework for optimizing experimental design with closed-loop real-time fMRI. NeuroImage 129: 320-334 (2016) - [j24]Ai Wern Chung, Markus Schirmer, Michelle L. Krishnan, Gareth Ball, Paul Aljabar, A. David Edwards, Giovanni Montana:
Characterising brain network topologies: A dynamic analysis approach using heat kernels. NeuroImage 141: 490-501 (2016) - [c16]Savelie Cornegruta, Robert Bakewell, Samuel Withey, Giovanni Montana:
Modelling Radiological Language with Bidirectional Long Short-Term Memory Networks. Louhi@EMNLP 2016: 17-27 - [c15]Rudra P. K. Poudel, Pablo Lamata, Giovanni Montana:
Recurrent Fully Convolutional Neural Networks for Multi-slice MRI Cardiac Segmentation. RAMBO+HVSMR@MICCAI 2016: 83-94 - [c14]Ai Wern Chung, Emanuele Pesce, Ricardo Pio Monti, Giovanni Montana:
Classifying HCP task-fMRI networks using heat kernels. PRNI 2016: 1-4 - [c13]Romy Lorenz, Ricardo Pio Monti, Adam Hampshire, Yury Koush, Christoforos Anagnostopoulos, Aldo A. Faisal, David J. Sharp, Giovanni Montana, Robert Leech, Inês R. Violante:
Towards tailoring non-invasive brain stimulation using real-time fMRI and Bayesian optimization. PRNI 2016: 1-4 - [c12]Ricardo Pio Monti, Romy Lorenz, Robert Leech, Christoforos Anagnostopoulos, Giovanni Montana:
Text-mining the neurosynth corpus using deep boltzmann machines. PRNI 2016: 1-4 - [c11]Zi Wang, Vyacheslav Karolis, Chiara Nosarti, Giovanni Montana:
Studying the brain from adolescence to adulthood through sparse multi-view matrix factorisations. PRNI 2016: 1-4 - [i10]Ricardo Pio Monti, Romy Lorenz, Robert Leech, Christoforos Anagnostopoulos, Giovanni Montana:
Text-mining the NeuroSynth corpus using Deep Boltzmann Machines. CoRR abs/1605.00223 (2016) - [i9]Zi Wang, Vyacheslav Karolis, Chiara Nosarti, Giovanni Montana:
Studying the brain from adolescence to adulthood through sparse multi-view matrix factorisations. CoRR abs/1605.02560 (2016) - [i8]Rudra P. K. Poudel, Pablo Lamata, Giovanni Montana:
Recurrent Fully Convolutional Neural Networks for Multi-slice MRI Cardiac Segmentation. CoRR abs/1608.03974 (2016) - [i7]Savelie Cornegruta, Robert Bakewell, Samuel Withey, Giovanni Montana:
Modelling Radiological Language with Bidirectional Long Short-Term Memory Networks. CoRR abs/1609.08409 (2016) - [i6]Petros-Pavlos Ypsilantis, Giovanni Montana:
Recurrent Convolutional Networks for Pulmonary Nodule Detection in CT Imaging. CoRR abs/1609.09143 (2016) - [i5]Ricardo Pio Monti, Christoforos Anagnostopoulos, Giovanni Montana:
A framework for adaptive regularization in streaming Lasso models. CoRR abs/1610.09127 (2016) - [i4]James H. Cole, Rudra P. K. Poudel, Dimosthenis Tsagkrasoulis, Matthan W. A. Caan, Claire J. Steves, Tim D. Spector, Giovanni Montana:
Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. CoRR abs/1612.02572 (2016) - 2015
- [j23]Zi Wang, Wei Yuan, Giovanni Montana:
Sparse multi-view matrix factorization: a multivariate approach to multiple tissue comparisons. Bioinform. 31(19): 3163-3171 (2015) - [j22]Da Ruan, Alastair Young, Giovanni Montana:
Differential analysis of biological networks. BMC Bioinform. 16: 327:1-327:13 (2015) - [c10]Zhana Kuncheva, Giovanni Montana:
Community Detection in Multiplex Networks using Locally Adaptive Random Walks. ASONAM 2015: 1308-1315 - [c9]Alexandre de Brébisson, Giovanni Montana:
Deep neural networks for anatomical brain segmentation. CVPR Workshops 2015: 20-28 - [c8]Eva Janousová, Daniel Schwarz, Giovanni Montana, Tomás Kaspárek:
Brain image classification based on automated morphometry and penalised linear discriminant analysis with resampling. FedCSIS 2015: 263-268 - [c7]Adrien Payan, Giovanni Montana:
Predicting Alzheimer's Disease - A Neuroimaging Study with 3D Convolutional Neural Networks. ICPRAM (2) 2015: 355-362 - [c6]Ricardo Pio Monti, Romy Lorenz, Peter Hellyer, Robert Leech, Christoforos Anagnostopoulos, Giovanni Montana:
Graph Embeddings of Dynamic Functional Connectivity Reveal Discriminative Patterns of Task Engagement in HCP Data. PRNI 2015: 1-4 - [i3]Alexandre de Brébisson, Giovanni Montana:
Deep Neural Networks for Anatomical Brain Segmentation. CoRR abs/1502.02445 (2015) - [i2]Adrien Payan, Giovanni Montana:
Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks. CoRR abs/1502.02506 (2015) - [i1]Zhana Kuncheva, Giovanni Montana:
Community detection in multiplex networks using locally adaptive random walks. CoRR abs/1507.01890 (2015) - 2014
- [j21]Zi Wang, Edward W. J. Curry, Giovanni Montana:
Network-guided regression for detecting associations between DNA methylation and gene expression. Bioinform. 30(19): 2693-2701 (2014) - [j20]Alberto Cozzini, Ajay Jasra, Giovanni Montana, Adam Persing:
A Bayesian mixture of lasso regressions with t-errors. Comput. Stat. Data Anal. 77: 84-97 (2014) - [j19]Brian McWilliams, Giovanni Montana:
Subspace clustering of high-dimensional data: a predictive approach. Data Min. Knowl. Discov. 28(3): 736-772 (2014) - [j18]Ricardo Pio Monti, Peter Hellyer, David J. Sharp, Robert Leech, Christoforos Anagnostopoulos, Giovanni Montana:
Estimating time-varying brain connectivity networks from functional MRI time series. NeuroImage 103: 427-443 (2014) - [j17]Christopher Minas, Giovanni Montana:
Distance-Based Analysis of Variance: Approximate Inference. Stat. Anal. Data Min. 7(6): 450-470 (2014) - 2013
- [j16]Christopher Minas, Edward W. J. Curry, Giovanni Montana:
A distance-based test of association between paired heterogeneous genomic data. Bioinform. 29(20): 2555-2563 (2013) - [j15]Yue Wang, Wilson Wen Bin Goh, Limsoon Wong, Giovanni Montana:
Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes. BMC Bioinform. 14(S-16): S6 (2013) - [j14]Alberto Cozzini, Ajay Jasra, Giovanni Montana:
Model-Based Clustering with gene Ranking using penalized Mixtures of heavy-tailed Distributions. J. Bioinform. Comput. Biol. 11(3) (2013) - 2012
- [j13]Maria Vounou, Eva Janousová, Robin Wolz, Jason L. Stein, Paul M. Thompson, Daniel Rueckert, Giovanni Montana:
Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer's disease. NeuroImage 60(1): 700-716 (2012) - [j12]Matt Silver, Eva Janousová, Xue Hua, Paul M. Thompson, Giovanni Montana:
Identification of gene pathways implicated in Alzheimer's disease using longitudinal imaging phenotypes with sparse regression. NeuroImage 63(3): 1681-1694 (2012) - [j11]Brian McWilliams, Giovanni Montana:
Multi-view predictive partitioning in high dimensions. Stat. Anal. Data Min. 5(4): 304-321 (2012) - [c5]Maurice Berk, Giovanni Montana:
A Skew-t-Normal Multi-level Reduced-Rank Functional PCA Model for the Analysis of Replicated Genomics Time Course Data. IDA 2012: 56-66 - 2011
- [j10]Maurice Berk, Timothy M. D. Ebbels, Giovanni Montana:
A statistical framework for biomarker discovery in metabolomic time course data. Bioinform. 27(14): 1979-1985 (2011) - [j9]Christopher Minas, Simon J. Waddell, Giovanni Montana:
Distance-based differential analysis of gene curves. Bioinform. 27(22): 3135-3141 (2011) - [j8]Kostas Triantafyllopoulos, Giovanni Montana:
Dynamic modeling of mean-reverting spreads for statistical arbitrage. Comput. Manag. Sci. 8(1-2): 23-49 (2011) - [j7]Matt Silver, Giovanni Montana, Thomas E. Nichols:
False positives in neuroimaging genetics using voxel-based morphometry data. NeuroImage 54(2): 992-1000 (2011) - [c4]Brian McWilliams, Giovanni Montana:
Predictive Subspace Clustering. ICMLA (1) 2011: 247-252 - [c3]Eva Janousová, Maria Vounou, Robin Wolz, Katherine R. Gray, Daniel Rueckert, Giovanni Montana:
Fast Brain-Wide Search of Highly Discriminative Regions in Medical Images: an Application to Alzheimers Disease. MIUA 2011: 17-22 - 2010
- [j6]Maria Vounou, Thomas E. Nichols, Giovanni Montana:
Discovering genetic associations with high-dimensional neuroimaging phenotypes: A sparse reduced-rank regression approach. NeuroImage 53(3): 1147-1159 (2010) - [j5]Brian McWilliams, Giovanni Montana:
Sparse partial least squares regression for on-line variable selection with multivariate data streams. Stat. Anal. Data Min. 3(3): 170-193 (2010)
2000 – 2009
- 2009
- [j4]Giovanni Montana, Kostas Triantafyllopoulos, Theodoros Tsagaris:
Flexible least squares for temporal data mining and statistical arbitrage. Expert Syst. Appl. 36(2): 2819-2830 (2009) - 2008
- [c2]Giovanni Montana, Francesco Parrella:
Learning to Trade with Incremental Support Vector Regression Experts. HAIS 2008: 591-598 - [c1]Giovanni Montana, Kostas Triantafyllopoulos, Theodoros Tsagaris:
Data stream mining for market-neutral algorithmic trading. SAC 2008: 966-970 - 2007
- [j3]Giovanni Montana, Clive J. Hoggart:
Statistical software for gene mapping by admixture linkage disequilibrium. Briefings Bioinform. 8(6): 393-395 (2007) - 2006
- [j2]Giovanni Montana:
Statistical methods in genetics. Briefings Bioinform. 7(3): 297-308 (2006) - 2005
- [j1]Giovanni Montana:
HapSim: a simulation tool for generating haplotype data with pre-specified allele frequencies and LD coefficients. Bioinform. 21(23): 4309-4311 (2005)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-02 18:17 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint