default search action
Thomas Bäck
Person information
- affiliation: Leiden Institute of Advanced Computer Science, Netherlands
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j67]Mitra Baratchi, Can Wang, Steffen Limmer, Jan N. van Rijn, Holger H. Hoos, Thomas Bäck, Markus Olhofer:
Automated machine learning: past, present and future. Artif. Intell. Rev. 57(5): 122 (2024) - [j66]Lucas Correia, Jan-Christoph Goos, Philipp Klein, Thomas Bäck, Anna V. Kononova:
Online model-based anomaly detection in multivariate time series: Taxonomy, survey, research challenges and future directions. Eng. Appl. Artif. Intell. 138: 109323 (2024) - [j65]Jacob de Nobel, Furong Ye, Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck:
IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics. Evol. Comput. 32(3): 205-210 (2024) - [j64]Charles Moussa, Yash J. Patel, Vedran Dunjko, Thomas Bäck, Jan N. van Rijn:
Hyperparameter importance and optimization of quantum neural networks across small datasets. Mach. Learn. 113(4): 1941-1966 (2024) - [j63]Roy de Winter, Bas Milatz, Julian Blank, Niki van Stein, Thomas Bäck, Kalyanmoy Deb:
Parallel multi-objective optimization for expensive and inexpensive objectives and constraints. Swarm Evol. Comput. 86: 101508 (2024) - [j62]Fu Xing Long, Bas van Stein, Moritz Frenzel, Peter Krause, Markus Gitterle, Thomas Bäck:
Generating Cheap Representative Functions for Expensive Automotive Crashworthiness Optimization. ACM Trans. Evol. Learn. Optim. 4(2): 9 (2024) - [c285]Wei Liu, Thomas Bäck, Yingjie Fan:
Cluster-Centric Local Search Strategies for Enhanced Multi-Objective Logistics Optimization. CEC 2024: 1-8 - [c284]Jiajie Fan, Amal Trigui, Thomas Bäck, Hao Wang:
Enhancing Plausibility Evaluation for Generated Designs with Denoising Autoencoder. ECCV (78) 2024: 88-105 - [c283]Qi Huang, Sofoklis Kitharidis, Thomas Bäck, Niki van Stein:
TX-Gen: Multi-Objective Optimization for Sparse Counterfactual Explanations for Time-Series Classification. EXPLAINS 2024: 62-74 - [c282]Saba Sadeghi Ahouei, Jacob de Nobel, Aneta Neumann, Thomas Bäck, Frank Neumann:
Evolving Reliable Differentiating Constraints for the Chance-constrained Maximum Coverage Problem. GECCO 2024 - [c281]Kirill Antonov, Roman Kalkreuth, Kaifeng Yang, Thomas Bäck, Niki van Stein, Anna V. Kononova:
A Functional Analysis Approach to Symbolic Regression. GECCO 2024 - [c280]Carola Doerr, Diederick Vermetten, Jacob de Nobel, Thomas Bäck:
Benchmarking and Analyzing Iterative Optimization Heuristics with IOHprofiler. GECCO Companion 2024: 791-799 - [c279]Martijn Halsema, Diederick Vermetten, Thomas Bäck, Niki van Stein:
A Critical Analysis of Raven Roost Optimization. GECCO Companion 2024: 1993-2001 - [c278]Roman Kalkreuth, Thomas Bäck:
CGP++ : A Modern C++ Implementation of Cartesian Genetic Programming. GECCO 2024 - [c277]Shuaiqun Pan, Diederick Vermetten, Manuel López-Ibáñez, Thomas Bäck, Hao Wang:
Transfer Learning of Surrogate Models via Domain Affine Transformation. GECCO 2024 - [c276]Diederick Vermetten, Carola Doerr, Hao Wang, Anna V. Kononova, Thomas Bäck:
Large-Scale Benchmarking of Metaphor-Based Optimization Heuristics. GECCO 2024 - [c275]Roy de Winter, Bas Milatz, Julian Blank, Niki van Stein, Thomas Bäck, Kalyanmoy Deb:
Hot off the Press: Parallel Multi-Objective Optimization for Expensive and Inexpensive Objectives and Constraints. GECCO Companion 2024: 31-32 - [c274]Roy de Winter, Thomas Bäck, Niki van Stein:
Modular Optimization Framework for Mixed Expensive and Inexpensive Real-World Problems. GECCO Companion 2024: 1715-1723 - [c273]Furong Ye, Frank Neumann, Jacob de Nobel, Aneta Neumann, Thomas Bäck:
What Performance Indicators to Use for Self-Adaptation in Multi-Objective Evolutionary Algorithms. GECCO 2024 - [c272]Haoran Yin, Diederick Vermetten, Furong Ye, Thomas H. W. Bäck, Anna V. Kononova:
Impact of Spatial Transformations on Exploratory and Deep-Learning Based Landscape Features of CEC2022 Benchmark Suite. IJCCI 2024: 60-71 - [c271]Jacob de Nobel, Diederick Vermetten, Thomas H. W. Bäck, Anna V. Kononova:
Sampling in CMA-ES: Low Numbers of Low Discrepancy Points. IJCCI 2024: 120-126 - [c270]Maarten C. Vonk, Diederick Vermetten, Jacob de Nobel, Sebastiaan Brand, Ninoslav Malekovic, Thomas Bäck, Alfons Laarman, Anna V. Kononova:
Optimizing Causal Interventions in Hybrid Bayesian Networks - A Discretization, Knowledge Compilation, and Heuristic Optimization Approach. IPMU (1) 2024: 245-256 - [c269]Diederick Vermetten, Johannes Lengler, Dimitri Rusin, Thomas Bäck, Carola Doerr:
Empirical Analysis of the Dynamic Binary Value Problem with IOHprofiler. PPSN (2) 2024: 20-35 - [c268]Fu Xing Long, Moritz Frenzel, Peter Krause, Markus Gitterle, Thomas Bäck, Niki van Stein:
Landscape-Aware Automated Algorithm Configuration Using Multi-output Mixed Regression and Classification. PPSN (2) 2024: 87-104 - [c267]Jacob de Nobel, Diederick Vermetten, Anna V. Kononova, Ofer M. Shir, Thomas Bäck:
Avoiding Redundant Restarts in Multimodal Global Optimization. PPSN (2) 2024: 268-283 - [e14]Michael Affenzeller, Stephan M. Winkler, Anna V. Kononova, Heike Trautmann, Tea Tusar, Penousal Machado, Thomas Bäck:
Parallel Problem Solving from Nature - PPSN XVIII - 18th International Conference, PPSN 2024, Hagenberg, Austria, September 14-18, 2024, Proceedings, Part I. Lecture Notes in Computer Science 15148, Springer 2024, ISBN 978-3-031-70054-5 [contents] - [e13]Michael Affenzeller, Stephan M. Winkler, Anna V. Kononova, Heike Trautmann, Tea Tusar, Penousal Machado, Thomas Bäck:
Parallel Problem Solving from Nature - PPSN XVIII - 18th International Conference, PPSN 2024, Hagenberg, Austria, September 14-18, 2024, Proceedings, Part II. Lecture Notes in Computer Science 15149, Springer 2024, ISBN 978-3-031-70067-5 [contents] - [e12]Michael Affenzeller, Stephan M. Winkler, Anna V. Kononova, Heike Trautmann, Tea Tusar, Penousal Machado, Thomas Bäck:
Parallel Problem Solving from Nature - PPSN XVIII - 18th International Conference, PPSN 2024, Hagenberg, Austria, September 14-18, 2024, Proceedings, Part III. Lecture Notes in Computer Science 15150, Springer 2024, ISBN 978-3-031-70070-5 [contents] - [e11]Michael Affenzeller, Stephan M. Winkler, Anna V. Kononova, Heike Trautmann, Tea Tusar, Penousal Machado, Thomas Bäck:
Parallel Problem Solving from Nature - PPSN XVIII - 18th International Conference, PPSN 2024, Hagenberg, Austria, September 14-18, 2024, Proceedings, Part IV. Lecture Notes in Computer Science 15151, Springer 2024, ISBN 978-3-031-70084-2 [contents] - [d22]Diederick Vermetten, Carola Doerr, Hao Wang, Anna V. Kononova, Thomas Bäck:
Large-Scale Benchmarking of Metaphor-Based Optimization Heuristics - Reproducibility Files. Zenodo, 2024 - [d21]Diederick Vermetten, Johannes Lengler, Dimitri Rusin, Thomas Bäck, Carola Doerr:
Benchmarking Dynamic Binary Value Problems with IOHprofiler - Reproducibility files. Zenodo, 2024 - [d20]Diederick Vermetten, Furong Ye, Thomas Bäck, Carola Doerr:
MA-BBOB - Reproducibility and Additional Data. Version 2. Zenodo, 2024 [all versions] - [i110]Niki van Stein, Diederick Vermetten, Anna V. Kononova, Thomas Bäck:
Explainable Benchmarking for Iterative Optimization Heuristics. CoRR abs/2401.17842 (2024) - [i109]Qi Huang, Wei Chen, Thomas Bäck, Niki van Stein:
Shapelet-based Model-agnostic Counterfactual Local Explanations for Time Series Classification. CoRR abs/2402.01343 (2024) - [i108]Kirill Antonov, Roman Kalkreuth, Kaifeng Yang, Thomas Bäck, Niki van Stein, Anna V. Kononova:
A Functional Analysis Approach to Symbolic Regression. CoRR abs/2402.06299 (2024) - [i107]Annie Wong, Jacob de Nobel, Thomas Bäck, Aske Plaat, Anna V. Kononova:
Solving Deep Reinforcement Learning Benchmarks with Linear Policy Networks. CoRR abs/2402.06912 (2024) - [i106]Haoran Yin, Diederick Vermetten, Furong Ye, Thomas H. W. Bäck, Anna V. Kononova:
Impact of spatial transformations on landscape features of CEC2022 basic benchmark problems. CoRR abs/2402.07654 (2024) - [i105]Diederick Vermetten, Carola Doerr, Hao Wang, Anna V. Kononova, Thomas Bäck:
Large-scale Benchmarking of Metaphor-based Optimization Heuristics. CoRR abs/2402.09800 (2024) - [i104]Jiajie Fan, Amal Trigui, Thomas Bäck, Hao Wang:
Enhancing Plausibility Evaluation for Generated Designs with Denoising Autoencoder. CoRR abs/2403.05352 (2024) - [i103]Diederick Vermetten, Johannes Lengler, Dimitri Rusin, Thomas Bäck, Carola Doerr:
Empirical Analysis of the Dynamic Binary Value Problem with IOHprofiler. CoRR abs/2404.15837 (2024) - [i102]Jacob de Nobel, Diederick Vermetten, Anna V. Kononova, Ofer M. Shir, Thomas Bäck:
Avoiding Redundant Restarts in Multimodal Global Optimization. CoRR abs/2405.01226 (2024) - [i101]Christian Internò, Elena Raponi, Niki van Stein, Thomas Bäck, Markus Olhofer, Yaochu Jin, Barbara Hammer:
Automated Federated Learning via Informed Pruning. CoRR abs/2405.10271 (2024) - [i100]Saba Sadeghi Ahouei, Jacob de Nobel, Aneta Neumann, Thomas Bäck, Frank Neumann:
Evolving Reliable Differentiating Constraints for the Chance-constrained Maximum Coverage Problem. CoRR abs/2405.18772 (2024) - [i99]Niki van Stein, Thomas Bäck:
LLaMEA: A Large Language Model Evolutionary Algorithm for Automatically Generating Metaheuristics. CoRR abs/2405.20132 (2024) - [i98]Roman Kalkreuth, Thomas Bäck:
CGP++ : A Modern C++ Implementation of Cartesian Genetic Programming. CoRR abs/2406.09038 (2024) - [i97]Lucas Correia, Jan-Christoph Goos, Philipp Klein, Thomas Bäck, Anna V. Kononova:
TeVAE: A Variational Autoencoder Approach for Discrete Online Anomaly Detection in Variable-state Multivariate Time-series Data. CoRR abs/2407.06849 (2024) - [i96]Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, Thomas Bäck:
Reasoning with Large Language Models, a Survey. CoRR abs/2407.11511 (2024) - [i95]Lucas Correia, Jan-Christoph Goos, Philipp Klein, Thomas Bäck, Anna V. Kononova:
Online Model-based Anomaly Detection in Multivariate Time Series: Taxonomy, Survey, Research Challenges and Future Directions. CoRR abs/2408.03747 (2024) - [i94]Fu Xing Long, Moritz Frenzel, Peter Krause, Markus Gitterle, Thomas Bäck, Niki van Stein:
Landscape-Aware Automated Algorithm Configuration using Multi-output Mixed Regression and Classification. CoRR abs/2409.01446 (2024) - [i93]Qi Huang, Sofoklis Kitharidis, Thomas Bäck, Niki van Stein:
TX-Gen: Multi-Objective Optimization for Sparse Counterfactual Explanations for Time-Series Classification. CoRR abs/2409.09461 (2024) - [i92]Ismail Labiad, Thomas Bäck, Pierre Fernandez, Laurent Najman, Tom Sander, Furong Ye, Mariia Zameshina, Olivier Teytaud:
Log-normal Mutations and their Use in Detecting Surreptitious Fake Images. CoRR abs/2409.15119 (2024) - [i91]Jacob de Nobel, Diederick Vermetten, Thomas H. W. Bäck, Anna V. Kononova:
Sampling in CMA-ES: Low Numbers of Low Discrepancy Points. CoRR abs/2409.15941 (2024) - [i90]Kirill A. Antonov, Marijn Siemons, Niki van Stein, Thomas H. W. Bäck, Ralf Kohlhaas, Anna V. Kononova:
Selection of Filters for Photonic Crystal Spectrometer Using Domain-Aware Evolutionary Algorithms. CoRR abs/2410.13657 (2024) - [i89]Niki van Stein, Diederick Vermetten, Thomas Bäck:
In-the-loop Hyper-Parameter Optimization for LLM-Based Automated Design of Heuristics. CoRR abs/2410.16309 (2024) - [i88]Ksenia Pereverdieva, André H. Deutz, Tessa Ezendam, Thomas Bäck, Hèrm Hofmeyer, Michael T. M. Emmerich:
Comparative Analysis of Indicators for Multiobjective Diversity Optimization. CoRR abs/2410.18900 (2024) - [i87]Jiajie Fan, Babak Gholami, Thomas Bäck, Hao Wang:
NeuroNURBS: Learning Efficient Surface Representations for 3D Solids. CoRR abs/2411.10848 (2024) - [i86]Lucas Correia, Jan-Christoph Goos, Thomas Bäck, Anna V. Kononova:
A Dataset for Evaluating Online Anomaly Detection Approaches for Discrete Multivariate Time Series. CoRR abs/2411.13951 (2024) - [i85]Haoran Yin, Anna V. Kononova, Thomas Bäck, Niki van Stein:
Controlling the Mutation in Large Language Models for the Efficient Evolution of Algorithms. CoRR abs/2412.03250 (2024) - [i84]Diederick Vermetten, Jeroen Rook, Oliver Ludger Preuß, Jacob de Nobel, Carola Doerr, Manuel López-Ibáñez, Heike Trautmann, Thomas Bäck:
MO-IOHinspector: Anytime Benchmarking of Multi-Objective Algorithms using IOHprofiler. CoRR abs/2412.07444 (2024) - 2023
- [j61]Annie Wong, Thomas Bäck, Anna V. Kononova, Aske Plaat:
Deep multiagent reinforcement learning: challenges and directions. Artif. Intell. Rev. 56(6): 5023-5056 (2023) - [j60]Maarten C. Vonk, Ninoslav Malekovic, Thomas Bäck, Anna V. Kononova:
Disentangling causality: assumptions in causal discovery and inference. Artif. Intell. Rev. 56(9): 10613-10649 (2023) - [j59]Alexander Zeiser, Bekir Özcan, Christoph Kracke, Bas van Stein, Thomas Bäck:
A data-centric approach to anomaly detection in layer-based additive manufacturing. Autom. 71(1): 81-89 (2023) - [j58]Alexander Zeiser, Bekir Özcan, Bas van Stein, Thomas Bäck:
Evaluation of deep unsupervised anomaly detection methods with a data-centric approach for on-line inspection. Comput. Ind. 146: 103852 (2023) - [j57]Haotian Zhang, Jianyong Sun, Thomas Bäck, Qingfu Zhang, Zongben Xu:
Controlling Sequential Hybrid Evolutionary Algorithm by Q-Learning [Research Frontier] [Research Frontier]. IEEE Comput. Intell. Mag. 18(1): 84-103 (2023) - [j56]Xishu Li, Maurits de Groot, Thomas Bäck:
Using forecasting to evaluate the impact of COVID-19 on passenger air transport demand. Decis. Sci. 54(4): 394-409 (2023) - [j55]Thomas H. W. Bäck, Anna V. Kononova, Bas van Stein, Hao Wang, Kirill A. Antonov, Roman T. Kalkreuth, Jacob de Nobel, Diederick Vermetten, Roy de Winter, Furong Ye:
Evolutionary Algorithms for Parameter Optimization - Thirty Years Later. Evol. Comput. 31(2): 81-122 (2023) - [j54]Zhengtian Ai, Ingo Heinle, Christian Schelske, Hao Wang, Peter Krause, Thomas Bäck:
Classification-based process parameter recommendation in sheet metal forming. J. Ind. Inf. Integr. 34: 100458 (2023) - [j53]Dani Irawan, Boris Naujoks, Thomas Bäck, Michael Emmerich:
Dominance-based variable analysis for large-scale multi-objective problems. Nat. Comput. 22(2): 243-257 (2023) - [c266]Diederick Vermetten, Furong Ye, Thomas Bäck, Carola Doerr:
MA-BBOB: Many-Affine Combinations of BBOB Functions for Evaluating AutoML Approaches in Noiseless Numerical Black-Box Optimization Contexts. AutoML 2023: 7/1-14 - [c265]Frank Neumann, Aneta Neumann, Chao Qian, Anh Viet Do, Jacob de Nobel, Diederick Vermetten, Saba Sadeghi Ahouei, Furong Ye, Hao Wang, Thomas Bäck:
Benchmarking Algorithms for Submodular Optimization Problems Using IOHProfiler. CEC 2023: 1-9 - [c264]David Von Dollen, Reuben Brasher, Florian Neukart, Thomas Bäck:
Hyperparameter Optimization and Neuroevolution with Binary Quadratic Meta-heuristics and Evolution Strategies. CiSt 2023: 536-540 - [c263]Ksenia Pereverdieva, Michael Emmerich, André H. Deutz, Tessa Ezendam, Thomas Bäck, Hèrm Hofmeyer:
The Prism-Net Search Space Representation for Multi-objective Building Spatial Design. EMO 2023: 476-489 - [c262]Divyam Aggarwal, Dhish Kumar Saxena, Thomas Bäck, Michael Emmerich:
Real-World Airline Crew Pairing Optimization: Customized Genetic Algorithm Versus Column Generation Method. EMO 2023: 518-531 - [c261]André Thomaser, Marc-Eric Vogt, Anna V. Kononova, Thomas Bäck:
Transfer of Multi-objectively Tuned CMA-ES Parameters to a Vehicle Dynamics Problem. EMO 2023: 546-560 - [c260]Sebastiaan Brand, Thomas Bäck, Alfons Laarman:
A Decision Diagram Operation for Reachability. FM 2023: 514-532 - [c259]Kirill A. Antonov, Anna V. Kononova, Thomas Bäck, Niki van Stein:
Curing ill-Conditionality via Representation-Agnostic Distance-Driven Perturbations. FOGA 2023: 15-26 - [c258]Roman Kalkreuth, Zdenek Vasícek, Jakub Husa, Diederick Vermetten, Furong Ye, Thomas Bäck:
General Boolean Function Benchmark Suite. FOGA 2023: 84-95 - [c257]Bas van Stein, Fu Xing Long, Moritz Frenzel, Peter Krause, Markus Gitterle, Thomas Bäck:
DoE2Vec: Deep-learning Based Features for Exploratory Landscape Analysis. GECCO Companion 2023: 515-518 - [c256]Roman Kalkreuth, Zdenek Vasícek, Jakub Husa, Diederick Vermetten, Furong Ye, Thomas Bäck:
Towards a General Boolean Function Benchmark Suite. GECCO Companion 2023: 591-594 - [c255]André Thomaser, Jacob de Nobel, Diederick Vermetten, Furong Ye, Thomas Bäck, Anna V. Kononova:
When to be Discrete: Analyzing Algorithm Performance on Discretized Continuous Problems. GECCO 2023: 856-863 - [c254]Diederick Vermetten, Fabio Caraffini, Anna V. Kononova, Thomas Bäck:
Modular Differential Evolution. GECCO 2023: 864-872 - [c253]Carola Doerr, Hao Wang, Diederick Vermetten, Thomas Bäck, Jacob de Nobel, Furong Ye:
Benchmarking and analyzing iterative optimization heuristics with IOHprofiler. GECCO Companion 2023: 938-945 - [c252]Christiaan Lamers, René Vidal, Nabil Belbachir, Niki van Stein, Thomas Bäck, Paris Giampouras:
Clustering-based Domain-Incremental Learning. ICCV (Workshops) 2023: 3376-3384 - [c251]André Thomaser, Marc-Eric Vogt, Thomas Bäck, Anna V. Kononova:
Real-World Optimization Benchmark from Vehicle Dynamics: Specification of Problems in 2D and Methodology for Transferring (Meta-)Optimized Algorithm Parameters. IJCCI 2023: 31-40 - [c250]Fu Xing Long, Diederick Vermetten, Anna V. Kononova, Roman Kalkreuth, Kaifeng Yang, Thomas Bäck, Niki van Stein:
Challenges of ELA-Guided Function Evolution Using Genetic Programming. IJCCI 2023: 119-130 - [c249]André Thomaser, Marc-Eric Vogt, Thomas Bäck, Anna V. Kononova:
Optimizing CMA-ES with CMA-ES. IJCCI 2023: 214-221 - [c248]Lucas Correia, Jan-Christoph Goos, Philipp Klein, Thomas Bäck, Anna V. Kononova:
MA-VAE: Multi-Head Attention-Based Variational Autoencoder Approach for Anomaly Detection in Multivariate Time-Series Applied to Automotive Endurance Powertrain Testing. IJCCI 2023: 407-418 - [c247]Waheeda Saib, Xavier Bonet-Monroig, Vedran Dunjko, Ivano Tavernelli, Thomas Bäck, Hao Wang:
Benchmarking Adaptive Quantum Circuit Optimization Algorithms for Quantum Chemistry. QCE 2023: 83-88 - [c246]Charles Moussa, Hao Wang, Mauricio Araya-Polo, Thomas Bäck, Vedran Dunjko:
Application of quantum-inspired generative models to small molecular datasets. QCE 2023: 342-348 - [d19]Fu Xing Long, Diederick Vermetten, Anna V. Kononova, Roman Kalkreuth, Kaifeng Yang, Thomas Bäck, Niki van Stein:
Challenges of ELA-based Function Evolution using Genetic Programming - Reproducability files. Zenodo, 2023 - [d18]Diederick Vermetten, Furong Ye, Thomas Bäck, Carola Doerr:
MA-BBOB - Reproducibility and Additional Data. Version 1. Zenodo, 2023 [all versions] - [i83]Frank Neumann, Aneta Neumann, Chao Qian, Anh Viet Do, Jacob de Nobel, Diederick Vermetten, Saba Sadeghi Ahouei, Furong Ye, Hao Wang, Thomas Bäck:
Benchmarking Algorithms for Submodular Optimization Problems Using IOHProfiler. CoRR abs/2302.01464 (2023) - [i82]Furong Ye, Frank Neumann, Jacob de Nobel, Aneta Neumann, Thomas Bäck:
What Performance Indicators to Use for Self-Adaptation in Multi-Objective Evolutionary Algorithms. CoRR abs/2303.04611 (2023) - [i81]Bas van Stein, Fu Xing Long, Moritz Frenzel, Peter Krause, Markus Gitterle, Thomas Bäck:
DoE2Vec: Deep-learning Based Features for Exploratory Landscape Analysis. CoRR abs/2304.01219 (2023) - [i80]Diederick Vermetten, Fabio Caraffini, Anna V. Kononova, Thomas Bäck:
Modular Differential Evolution. CoRR abs/2304.09524 (2023) - [i79]Charles Moussa, Hao Wang, Mauricio Araya-Polo, Thomas Bäck, Vedran Dunjko:
Application of quantum-inspired generative models to small molecular datasets. CoRR abs/2304.10867 (2023) - [i78]André Thomaser, Jacob de Nobel, Diederick Vermetten, Furong Ye, Thomas Bäck, Anna V. Kononova:
When to be Discrete: Analyzing Algorithm Performance on Discretized Continuous Problems. CoRR abs/2304.13117 (2023) - [i77]Fu Xing Long, Diederick Vermetten, Anna V. Kononova, Roman Kalkreuth, Kaifeng Yang, Thomas Bäck, Niki van Stein:
Challenges of ELA-guided Function Evolution using Genetic Programming. CoRR abs/2305.15245 (2023) - [i76]Kirill Antonov, Anna V. Kononova, Thomas Bäck, Niki van Stein:
Representation-agnostic distance-driven perturbation for optimizing ill-conditioned problems. CoRR abs/2306.02985 (2023) - [i75]Diederick Vermetten, Furong Ye, Thomas Bäck, Carola Doerr:
MA-BBOB: Many-Affine Combinations of BBOB Functions for Evaluating AutoML Approaches in Noiseless Numerical Black-Box Optimization Contexts. CoRR abs/2306.10627 (2023) - [i74]Jiajie Fan, Laure Vuaille, Hao Wang, Thomas Bäck:
Adversarial Latent Autoencoder with Self-Attention for Structural Image Synthesis. CoRR abs/2307.10166 (2023) - [i73]Lucas Correia, Jan-Christoph Goos, Philipp Klein, Thomas Bäck, Anna V. Kononova:
MA-VAE: Multi-head Attention-based Variational Autoencoder Approach for Anomaly Detection in Multivariate Time-series Applied to Automotive Endurance Powertrain Testing. CoRR abs/2309.02253 (2023) - [i72]Christiaan Lamers, René Vidal, Ahmed Nabil Belbachir, Niki van Stein, Thomas Bäck, Paris Giampouras:
Clustering-based Domain-Incremental Learning. CoRR abs/2309.12078 (2023) - [i71]Jiajie Fan, Laure Vuaille, Thomas Bäck, Hao Wang:
On the Noise Scheduling for Generating Plausible Designs with Diffusion Models. CoRR abs/2311.11207 (2023) - [i70]Diederick Vermetten, Furong Ye, Thomas Bäck, Carola Doerr:
MA-BBOB: A Problem Generator for Black-Box Optimization Using Affine Combinations and Shifts. CoRR abs/2312.11083 (2023) - 2022
- [j52]Duc Anh Nguyen, Anna V. Kononova, Stefan Menzel, Bernhard Sendhoff, Thomas Bäck:
An Efficient Contesting Procedure for AutoML Optimization. IEEE Access 10: 75754-75771 (2022) - [j51]Bas van Stein, Elena Raponi, Zahra Sadeghi, Niek Bouman, Roeland C. H. J. van Ham, Thomas Bäck:
A Comparison of Global Sensitivity Analysis Methods for Explainable AI With an Application in Genomic Prediction. IEEE Access 10: 103364-103381 (2022) - [j50]Hugo Manuel Proença, Peter Grünwald, Thomas Bäck, Matthijs van Leeuwen:
Robust subgroup discovery. Data Min. Knowl. Discov. 36(5): 1885-1970 (2022) - [j49]Marios Kefalas, Juan de Santiago Rojo Jr., Asteris Apostolidis, Dirk van den Herik, Bas van Stein, Thomas Bäck:
Explainable Artificial Intelligence for Exhaust Gas Temperature of Turbofan Engines. J. Aerosp. Inf. Syst. 19(6): 447-454 (2022) - [j48]Danny Weyns, Thomas Bäck, René Vidal, Xin Yao, Ahmed Nabil Belbachir:
The vision of self-evolving computing systems. J. Integr. Des. Process. Sci. 26(3-4): 351-367 (2022) - [j47]Roy de Winter, Philip Bronkhorst, Bas van Stein, Thomas Bäck:
Constrained Multi-Objective Optimization with a Limited Budget of Function Evaluations. Memetic Comput. 14(2): 151-164 (2022) - [j46]Thiago Rios, Bas van Stein, Thomas Bäck, Bernhard Sendhoff, Stefan Menzel:
Multitask Shape Optimization Using a 3-D Point Cloud Autoencoder as Unified Representation. IEEE Trans. Evol. Comput. 26(2): 206-217 (2022) - [j45]Thomas Bäck, Carola Doerr, Bernhard Sendhoff, Thomas Stützle:
Guest Editorial Special Issue on Benchmarking Sampling-Based Optimization Heuristics: Methodology and Software. IEEE Trans. Evol. Comput. 26(6): 1202-1205 (2022) - [j44]Furong Ye, Carola Doerr, Hao Wang, Thomas Bäck:
Automated Configuration of Genetic Algorithms by Tuning for Anytime Performance. IEEE Trans. Evol. Comput. 26(6): 1526-1538 (2022) - [j43]Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, Thomas Bäck:
IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics. ACM Trans. Evol. Learn. Optim. 2(1): 3:1-3:29 (2022) - [c245]Charles Moussa, Jan N. van Rijn, Thomas Bäck, Vedran Dunjko:
Hyperparameter Importance of Quantum Neural Networks Across Small Datasets. DS 2022: 32-46 - [c244]Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, Thomas Bäck:
IOHanalyzer: Detailed performance analyses for iterative optimization heuristics: hot-off-the-press track @ GECCO 2022. GECCO Companion 2022: 49-50 - [c243]Furong Ye, Carola Doerr, Hao Wang, Thomas Bäck:
Automated configuration of genetic algorithms by tuning for anytime performance: hot-off-the-press track at GECCCO 2022. GECCO Companion 2022: 51-52 - [c242]David Von Dollen, Sheir Yarkoni, Daniel Weimer, Florian Neukart, Thomas Bäck:
Quantum-enhanced selection operators for evolutionary algorithms. GECCO Companion 2022: 463-466 - [c241]Roy de Winter, Bas van Stein, Thomas Bäck:
Multi-point acquisition function for constraint parallel efficient multi-objective optimization. GECCO 2022: 511-519 - [c240]Diederick Vermetten, Hao Wang, Manuel López-Ibáñez, Carola Doerr, Thomas Bäck:
Analyzing the impact of undersampling on the benchmarking and configuration of evolutionary algorithms. GECCO 2022: 867-875 - [c239]Fu Xing Long, Bas van Stein, Moritz Frenzel, Peter Krause, Markus Gitterle, Thomas Bäck:
Learning the characteristics of engineering optimization problems with applications in automotive crash. GECCO 2022: 1227-1236 - [c238]Carola Doerr, Hao Wang, Diederick Vermetten, Thomas Bäck, Jacob de Nobel, Furong Ye:
Benchmarking and analyzing iterative optimization heuristics with IOH profiler. GECCO Companion 2022: 1334-1341 - [c237]Ofer M. Shir, Thomas Bäck:
Sequential experimentation by evolutionary algorithms. GECCO Companion 2022: 1450-1468 - [c236]André Thomaser, Anna V. Kononova, Marc-Eric Vogt, Thomas Bäck:
One-shot optimization for vehicle dynamics control systems: towards benchmarking and exploratory landscape analysis. GECCO Companion 2022: 2036-2045 - [c235]Fan Yang, Marios Kefalas, Milan Koch, Anna V. Kononova, Yanan Qiao, Thomas Bäck:
Auto-REP: An Automated Regression Pipeline Approach for High-efficiency Earthquake Prediction Using LANL Data. ICCAE 2022: 127-134 - [c234]Veysel Kocaman, Ofer M. Shir, Thomas Bäck, Ahmed Nabil Belbachir:
Saliency Can Be All You Need in Contrastive Self-supervised Learning. ISVC (2) 2022: 119-140 - [c233]Furong Ye, Diederick Vermetten, Carola Doerr, Thomas Bäck:
Non-elitist Selection Can Improve the Performance of Irace. PPSN (1) 2022: 32-45 - [c232]Sibghat Ullah, Hao Wang, Stefan Menzel, Bernhard Sendhoff, Thomas Bäck:
A Systematic Approach to Analyze the Computational Cost of Robustness in Model-Assisted Robust Optimization. PPSN (1) 2022: 63-75 - [c231]Qi Huang, Roy de Winter, Bas van Stein, Thomas Bäck, Anna V. Kononova:
Multi-surrogate Assisted Efficient Global Optimization for Discrete Problems. SSCI 2022: 1650-1658 - [p2]Luca Mariot, Domagoj Jakobovic, Thomas Bäck, Julio C. Hernandez-Castro:
Artificial Intelligence for the Design of Symmetric Cryptographic Primitives. Security and Artificial Intelligence 2022: 3-24 - [e10]Thomas Bäck, Bas van Stein, Christian Wagner, Jonathan M. Garibaldi, H. K. Lam, Marie Cottrell, Faiyaz Doctor, Joaquim Filipe, Kevin Warwick, Janusz Kacprzyk:
Proceedings of the 14th International Joint Conference on Computational Intelligence, IJCCI 2022, Valletta, Malta, October 24-26, 2022. SCITEPRESS 2022, ISBN 978-989-758-611-8 [contents] - [e9]Lejla Batina, Thomas Bäck, Ileana Buhan, Stjepan Picek:
Security and Artificial Intelligence - A Crossdisciplinary Approach. Lecture Notes in Computer Science 13049, Springer 2022, ISBN 978-3-030-98794-7 [contents] - [d17]Sebastiaan Brand, Thomas Bäck, Alfons Laarman:
FM 2023 Artefact for "A Decision Diagram Operation for Reachability". Zenodo, 2022 - [d16]Sander van Rijn, Sebastian Schmitt, Matthijs van Leeuwen, Thomas Bäck:
Finding Efficient Trade-offs in Multi-Fidelity Response Surface Modeling: Generated data files and figures. Version v2. Zenodo, 2022 [all versions] - [d15]Diederick Vermetten, Hao Wang, Manuel López-Ibáñez, Carola Doerr, Thomas Bäck:
Analyzing the Impact of Undersampling on the Benchmarkingand Configuration of Evolutionary Algorithms - Dataset. Zenodo, 2022 - [d14]Furong Ye, Diederick Vermetten, Carola Doerr, Thomas Bäck:
Data Sets for the study "Non-Elitist Selection Can Improve the Performance of Irace". Zenodo, 2022 - [i69]Furong Ye, Diederick L. Vermetten, Carola Doerr, Thomas Bäck:
Non-Elitist Selection among Survivor Configurations can Improve the Performance of Irace. CoRR abs/2203.09227 (2022) - [i68]Marios Kefalas, Juan de Santiago Rojo Jr., Asteris Apostolidis, Dirk van den Herik, Bas van Stein, Thomas Bäck:
Explainable Artificial Intelligence for Exhaust Gas Temperature of Turbofan Engines. CoRR abs/2203.13108 (2022) - [i67]Dominik Schröder, Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck:
Chaining of Numerical Black-box Algorithms: Warm-Starting and Switching Points. CoRR abs/2204.06539 (2022) - [i66]Danny Weyns, Thomas Bäck, René Vidal, Xin Yao, Ahmed Nabil Belbachir:
The Vision of Self-Evolving Computing Systems. CoRR abs/2204.06825 (2022) - [i65]Diederick Vermetten, Hao Wang, Manuel López-Ibáñez, Carola Doerr, Thomas Bäck:
Analyzing the Impact of Undersampling on the Benchmarking and Configuration of Evolutionary Algorithms. CoRR abs/2204.09353 (2022) - [i64]Andrea Skolik, Michele Cattelan, Sheir Yarkoni, Thomas Bäck, Vedran Dunjko:
Equivariant quantum circuits for learning on weighted graphs. CoRR abs/2205.06109 (2022) - [i63]Charles Moussa, Jan N. van Rijn, Thomas Bäck, Vedran Dunjko:
Hyperparameter Importance of Quantum Neural Networks Across Small Datasets. CoRR abs/2206.09992 (2022) - [i62]David Von Dollen, Sheir Yarkoni, Daniel Weimer, Florian Neukart, Thomas Bäck:
Quantum-Enhanced Selection Operators for Evolutionary Algorithms. CoRR abs/2206.10743 (2022) - [i61]Patrick Echtenbruck, Martina Echtenbruck, Kees Joost Batenburg, Thomas Bäck, Boris Naujoks, Michael Emmerich:
Optimally Weighted Ensembles of Regression Models: Exact Weight Optimization and Applications. CoRR abs/2206.11263 (2022) - [i60]Yash J. Patel, Sofiène Jerbi, Thomas Bäck, Vedran Dunjko:
Reinforcement Learning Assisted Recursive QAOA. CoRR abs/2207.06294 (2022) - [i59]Alexander Zeiser, Bas van Stein, Thomas Bäck:
Deep Learning based pipeline for anomaly detection and quality enhancement in industrial binder jetting processes. CoRR abs/2209.10178 (2022) - [i58]Veysel Kocaman, Ofer M. Shir, Thomas Bäck, Ahmed Nabil Belbachir:
Saliency Can Be All You Need In Contrastive Self-Supervised Learning. CoRR abs/2210.16776 (2022) - [i57]Jacob de Nobel, Anna V. Kononova, Jeroen Briaire, Johan H. M. Frijns, Thomas Bäck:
Optimizing Stimulus Energy for Cochlear Implants with a Machine Learning Model of the Auditory Nerve. CoRR abs/2211.07285 (2022) - [i56]Sebastiaan Brand, Thomas Bäck, Alfons Laarman:
A Decision Diagram Operation for Reachability. CoRR abs/2212.03684 (2022) - [i55]Qi Huang, Roy de Winter, Bas van Stein, Thomas Bäck, Anna V. Kononova:
Multi-surrogate Assisted Efficient Global Optimization for Discrete Problems. CoRR abs/2212.06438 (2022) - 2021
- [j42]Andrés Camero, Hao Wang, Enrique Alba, Thomas Bäck:
Bayesian neural architecture search using a training-free performance metric. Appl. Soft Comput. 106: 107356 (2021) - [j41]Markus Thill, Wolfgang Konen, Hao Wang, Thomas Bäck:
Temporal convolutional autoencoder for unsupervised anomaly detection in time series. Appl. Soft Comput. 112: 107751 (2021) - [j40]Anna V. Kononova, Fabio Caraffini, Thomas Bäck:
Differential evolution outside the box. Inf. Sci. 581: 587-604 (2021) - [j39]Yali Wang, Steffen Limmer, Markus Olhofer, Michael Emmerich, Thomas Bäck:
Automatic preference based multi-objective evolutionary algorithm on vehicle fleet maintenance scheduling optimization. Swarm Evol. Comput. 65: 100933 (2021) - [j38]Jianyong Sun, Xin Liu, Thomas Bäck, Zongben Xu:
Learning Adaptive Differential Evolution Algorithm From Optimization Experiences by Policy Gradient. IEEE Trans. Evol. Comput. 25(4): 666-680 (2021) - [c230]Thiago Rios, Bas van Stein, Thomas Bäck, Bernhard Sendhoff, Stefan Menzel:
Point2FFD: Learning Shape Representations of Simulation-Ready 3D Models for Engineering Design Optimization. 3DV 2021: 1024-1033 - [c229]Alexander Zeiser, Bas van Stein, Thomas Bäck:
Requirements towards optimizing analytics in industrial processes. ANT/EDI40 2021: 597-605 - [c228]Thiago Rios, Bas van Stein, Patricia Wollstadt, Thomas Bäck, Bernhard Sendhoff, Stefan Menzel:
Exploiting Local Geometric Features in Vehicle Design Optimization with 3D Point Cloud Autoencoders. CEC 2021: 514-521 - [c227]Van Duc Nguyen, Ewout Zwanenburg, Steffen Limmer, Wessel Luijben, Thomas Bäck, Markus Olhofer:
A Combination of Fourier Transform and Machine Learning for Fault Detection and Diagnosis of Induction Motors. DSA 2021: 344-351 - [c226]Duc Anh Nguyen, Jiawen Kong, Hao Wang, Stefan Menzel, Bernhard Sendhoff, Anna V. Kononova, Thomas Bäck:
Improved Automated CASH Optimization with Tree Parzen Estimators for Class Imbalance Problems. DSAA 2021: 1-9 - [c225]Roy de Winter, Bas van Stein, Thomas Bäck:
SAMO-COBRA: A Fast Surrogate Assisted Constrained Multi-objective Optimization Algorithm. EMO 2021: 270-282 - [c224]Charles Moussa, Hao Wang, Henri Calandra, Thomas Bäck, Vedran Dunjko:
Tabu-Driven Quantum Neighborhood Samplers. EvoCOP 2021: 100-119 - [c223]Furong Ye, Carola Doerr, Thomas Bäck:
Leveraging benchmarking data for informed one-shot dynamic algorithm selection. GECCO Companion 2021: 245-246 - [c222]Jacob de Nobel, Hao Wang, Thomas Bäck:
Explorative data analysis of time series based algorithm features of CMA-ES variants. GECCO 2021: 510-518 - [c221]Alexander Hagg, Sebastian Berns, Alexander Asteroth, Simon Colton, Thomas Bäck:
Expressivity of parameterized and data-driven representations in quality diversity search. GECCO 2021: 678-686 - [c220]Ofer M. Shir, Thomas Bäck:
Sequential experimentation by evolutionary algorithms. GECCO Companion 2021: 941-958 - [c219]Diederick Vermetten, Anna V. Kononova, Fabio Caraffini, Hao Wang, Thomas Bäck:
Is there anisotropy in structural bias? GECCO Companion 2021: 1243-1250 - [c218]Sibghat Ullah, Hao Wang, Stefan Menzel, Bernhard Sendhoff, Thomas Bäck:
A new acquisition function for robust Bayesian optimization of unconstrained problems. GECCO Companion 2021: 1344-1345 - [c217]Jacob de Nobel, Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck:
Tuning as a means of assessing the benefits of new ideas in interplay with existing algorithmic modules. GECCO Companion 2021: 1375-1384 - [c216]Anna V. Kononova, Ofer M. Shir, Teus Tukker, Pierluigi Frisco, Shutong Zeng, Thomas Bäck:
Addressing the multiplicity of solutions in optical lens design as a niching evolutionary algorithms computational challenge. GECCO Companion 2021: 1596-1604 - [c215]Sheir Yarkoni, Andreas Huck, Hanno Schülldorf, Benjamin Speitkamp, Marc Shakory Tabrizi, Martin Leib, Thomas Bäck, Florian Neukart:
Solving the Shipment Rerouting Problem with Quantum Optimization Techniques. ICCL 2021: 502-517 - [c214]Marios Kefalas, Mitra Baratchi, Asteris Apostolidis, Dirk van den Herik, Thomas Bäck:
Automated Machine Learning for Remaining Useful Life Estimation of Aircraft Engines. ICPHM 2021: 1-9 - [c213]Veysel Kocaman, Ofer M. Shir, Thomas Bäck:
The Unreasonable Effectiveness of the Final Batch Normalization Layer. ISVC (2) 2021: 81-93 - [c212]Gideon Hanse, Roy de Winter, Bas van Stein, Thomas Bäck:
Optimally Weighted Ensembles for Efficient Multi-objective Optimization. LOD 2021: 144-156 - [c211]Sheir Yarkoni, Alex Alekseyenko, Michael Streif, David Von Dollen, Florian Neukart, Thomas Bäck:
Multi-car paint shop optimization with quantum annealing. QCE 2021: 35-41 - [c210]Duc Anh Nguyen, Anna V. Kononova, Stefan Menzel, Bernhard Sendhoff, Thomas Bäck:
Efficient AutoML via Combinational Sampling. SSCI 2021: 1-10 - [c209]Sneha Saha, Thiago Rios, Leandro L. Minku, Bas van Stein, Patricia Wollstadt, Xin Yao, Thomas Bäck, Bernhard Sendhoff, Stefan Menzel:
Exploiting Generative Models for Performance Predictions of 3D Car Designs. SSCI 2021: 1-9 - [e8]Thomas Bäck, Christian Wagner, Jonathan M. Garibaldi, H. K. Lam, Marie Cottrell, Juan Julián Merelo, Kevin Warwick:
Proceedings of the 13th International Joint Conference on Computational Intelligence, IJCCI 2021, Online Streaming, October 25-27, 2021. SCITEPRESS 2021, ISBN 978-989-758-534-0 [contents] - [d13]Sander van Rijn, Sebastian Schmitt, Matthijs van Leeuwen, Thomas Bäck:
Finding Efficient Trade-offs in Multi-Fidelity Response Surface Modeling: Generated data files and figures. Version v1. Zenodo, 2021 [all versions] - [d12]Diederick Vermetten, Hao Wang, Furong Ye, Carola Doerr, Thomas Bäck:
IOHanalyzer version 0.1.6.1 + example datasets. Zenodo, 2021 - [d11]Furong Ye, Carola Doerr, Thomas Bäck:
Data Sets for the study "Leveraging Benchmarking Data for Informed One-Shot Dynamic Algorithm Selection". Zenodo, 2021 - [d10]Furong Ye, Carola Doerr, Hao Wang, Thomas Bäck:
Data sets for the study "Automated Configuration of Genetic Algorithms by Tuning for Anytime Performance.". Zenodo, 2021 - [i54]Yali Wang, Steffen Limmer, Markus Olhofer, Michael Emmerich, Thomas Bäck:
Automatic Preference Based Multi-objective Evolutionary Algorithm on Vehicle Fleet Maintenance Scheduling Optimization. CoRR abs/2101.09556 (2021) - [i53]Jianyong Sun, Xin Liu, Thomas Bäck, Zongben Xu:
Learning adaptive differential evolution algorithm from optimization experiences by policy gradient. CoRR abs/2102.03572 (2021) - [i52]Furong Ye, Carola Doerr, Thomas Bäck:
Leveraging Benchmarking Data for Informed One-Shot Dynamic Algorithm Selection. CoRR abs/2102.06481 (2021) - [i51]Jacob de Nobel, Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck:
Tuning as a Means of Assessing the Benefits of New Ideas in Interplay with Existing Algorithmic Modules. CoRR abs/2102.12905 (2021) - [i50]Sander van Rijn, Sebastian Schmitt, Matthijs van Leeuwen, Thomas Bäck:
Finding Efficient Trade-offs in Multi-Fidelity Response Surface Modeling. CoRR abs/2103.03280 (2021) - [i49]Theodoros Georgiou, Sebastian Schmitt, Thomas Bäck, Nan Pu, Wei Chen, Michael S. Lew:
PREPRINT: Comparison of deep learning and hand crafted features for mining simulation data. CoRR abs/2103.06552 (2021) - [i48]Theodoros Georgiou, Sebastian Schmitt, Thomas Bäck, Wei Chen, Michael S. Lew:
Preprint: Norm Loss: An efficient yet effective regularization method for deep neural networks. CoRR abs/2103.06583 (2021) - [i47]Hugo Manuel Proença, Thomas Bäck, Matthijs van Leeuwen:
Robust subgroup discovery. CoRR abs/2103.13686 (2021) - [i46]David Von Dollen, Florian Neukart, Daniel Weimer, Thomas Bäck:
Quantum-Assisted Feature Selection for Vehicle Price Prediction Modeling. CoRR abs/2104.04049 (2021) - [i45]Jacob de Nobel, Hao Wang, Thomas Bäck:
Explorative Data Analysis of Time Series based AlgorithmFeatures of CMA-ES Variants. CoRR abs/2104.08098 (2021) - [i44]Alexander Hagg, Sebastian Berns, Alexander Asteroth, Simon Colton, Thomas Bäck:
Expressivity of Parameterized and Data-driven Representations in Quality Diversity Search. CoRR abs/2105.04247 (2021) - [i43]Alexander Hagg, Mike Preuss, Alexander Asteroth, Thomas Bäck:
An Analysis of Phenotypic Diversity in Multi-Solution Optimization. CoRR abs/2105.04252 (2021) - [i42]Alexander Hagg, Dominik Wilde, Alexander Asteroth, Thomas Bäck:
Designing Air Flow with Surrogate-assisted Phenotypic Niching. CoRR abs/2105.04256 (2021) - [i41]Diederick Vermetten, Anna V. Kononova, Fabio Caraffini, Hao Wang, Thomas Bäck:
Is there Anisotropy in Structural Bias? CoRR abs/2105.04480 (2021) - [i40]Anna V. Kononova, Ofer M. Shir, Teus Tukker, Pierluigi Frisco, Shutong Zeng, Thomas Bäck:
Addressing the Multiplicity of Solutions in Optical Lens Design as a Niching Evolutionary Algorithms Computational Challenge. CoRR abs/2105.10541 (2021) - [i39]Furong Ye, Carola Doerr, Hao Wang, Thomas Bäck:
Automated Configuration of Genetic Algorithms by Tuning for Anytime Performance. CoRR abs/2106.06304 (2021) - [i38]Annie Wong, Thomas Bäck, Anna V. Kononova, Aske Plaat:
Multiagent Deep Reinforcement Learning: Challenges and Directions Towards Human-Like Approaches. CoRR abs/2106.15691 (2021) - [i37]Danny Weyns, Thomas Bäck, René Vidal, Xin Yao, Ahmed Nabil Belbachir:
Lifelong Computing. CoRR abs/2108.08802 (2021) - [i36]Sheir Yarkoni, Alex Alekseyenko, Michael Streif, David Von Dollen, Florian Neukart, Thomas Bäck:
Multi-car paint shop optimization with quantum annealing. CoRR abs/2109.07876 (2021) - [i35]Veysel Kocaman, Ofer M. Shir, Thomas Bäck:
The Unreasonable Effectiveness of the Final Batch Normalization Layer. CoRR abs/2109.09016 (2021) - [i34]Jacob de Nobel, Furong Ye, Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck:
IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics. CoRR abs/2111.04077 (2021) - 2020
- [j37]Bas van Stein, Hao Wang, Wojtek Kowalczyk, Michael Emmerich, Thomas Bäck:
Cluster-based Kriging approximation algorithms for complexity reduction. Appl. Intell. 50(3): 778-791 (2020) - [j36]Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M. Shir, Thomas Bäck:
Benchmarking discrete optimization heuristics with IOHprofiler. Appl. Soft Comput. 88: 106027 (2020) - [j35]Mozhan Soltani, Felienne Hermans, Thomas Bäck:
The significance of bug report elements. Empir. Softw. Eng. 25(6): 5255-5294 (2020) - [c208]Marios Kefalas, Milan Koch, Victor Geraedts, Hao Wang, Martijn Tannemaat, Thomas Bäck:
Automated Machine Learning for the Classification of Normal and Abnormal Electromyography Data. IEEE BigData 2020: 1176-1185 - [c207]Alexander Hagg, Mike Preuss, Alexander Asteroth, Thomas Bäck:
An Analysis of Phenotypic Diversity in Multi-solution Optimization. BIOMA 2020: 43-55 - [c206]Markus Thill, Wolfgang Konen, Thomas Bäck:
Time Series Encodings with Temporal Convolutional Networks. BIOMA 2020: 161-173 - [c205]Anna V. Kononova, Fabio Caraffini, Hao Wang, Thomas Bäck:
Can Single Solution Optimisation Methods Be Structurally Biased? CEC 2020: 1-9 - [c204]Yali Wang, Bas van Stein, Thomas Bäck, Michael Emmerich:
Improving NSGA-III for flexible job shop scheduling using automatic configuration, smart initialization and local search. GECCO Companion 2020: 181-182 - [c203]Diederick Vermetten, Hao Wang, Thomas Bäck, Carola Doerr:
Towards dynamic algorithm selection for numerical black-box optimization: investigating BBOB as a use case. GECCO 2020: 654-662 - [c202]Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck:
Integrated vs. sequential approaches for selecting and tuning CMA-ES variants. GECCO 2020: 903-912 - [c201]Ofer M. Shir, Thomas Bäck:
Sequential experimentation by evolutionary algorithms. GECCO Companion 2020: 957-974 - [c200]Hao Wang, Carola Doerr, Ofer M. Shir, Thomas Bäck:
Benchmarking and analyzing iterative optimization heuristics with IOHprofiler. GECCO Companion 2020: 1043-1054 - [c199]Rick Boks, Hao Wang, Thomas Bäck:
A modular hybridization of particle swarm optimization and differential evolution. GECCO Companion 2020: 1418-1425 - [c198]Alexander Hagg, Alexander Asteroth, Thomas Bäck:
A Deep Dive Into Exploring the Preference Hypervolume. ICCC 2020: 394-397 - [c197]Theodoros Georgiou, Sebastian Schmitt, Thomas Bäck, Nan Pu, Wei Chen, Michael S. Lew:
Comparison of deep learning and hand crafted features for mining simulation data. ICPR 2020: 3396-3403 - [c196]Theodoros Georgiou, Sebastian Schmitt, Thomas Bäck, Wei Chen, Michael S. Lew:
Norm Loss: An efficient yet effective regularization method for deep neural networks. ICPR 2020: 8812-8818 - [c195]Veysel Kocaman, Ofer M. Shir, Thomas Bäck:
Improving Model Accuracy for Imbalanced Image Classification Tasks by Adding a Final Batch Normalization Layer: An Empirical Study. ICPR 2020: 10404-10411 - [c194]Thiago Rios, Bas van Stein, Stefan Menzel, Thomas Bäck, Bernhard Sendhoff, Patricia Wollstadt:
Feature Visualization for 3D Point Cloud Autoencoders. IJCNN 2020: 1-9 - [c193]Ullah Ullah, Zhao Xu, Hao Wang, Stefan Menzel, Bernhard Sendhoff, Thomas Bäck:
Exploring Clinical Time Series Forecasting with Meta-Features in Variational Recurrent Models. IJCNN 2020: 1-9 - [c192]Zhengtian Ai, Ingo Heinle, Christian Schelske, Hao Wang, Peter Krause, Thomas Bäck:
A Classification-based Solution For Recommending Process Parameters of Production Processes Without Quality Measures. ISM 2020: 600-607 - [c191]Jiawen Kong, Thiago Rios, Wojtek Kowalczyk, Stefan Menzel, Thomas Bäck:
On the Performance of Oversampling Techniques for Class Imbalance Problems. PAKDD (2) 2020: 84-96 - [c190]Hugo Manuel Proença, Peter Grünwald, Thomas Bäck, Matthijs van Leeuwen:
Discovering Outstanding Subgroup Lists for Numeric Targets Using MDL. ECML/PKDD (1) 2020: 19-35 - [c189]Alexander Hagg, Dominik Wilde, Alexander Asteroth, Thomas Bäck:
Designing Air Flow with Surrogate-Assisted Phenotypic Niching. PPSN (1) 2020: 140-153 - [c188]Anna V. Kononova, Fabio Caraffini, Hao Wang, Thomas Bäck:
Can Compact Optimisation Algorithms Be Structurally Biased? PPSN (1) 2020: 229-242 - [c187]Yali Wang, André H. Deutz, Thomas Bäck, Michael Emmerich:
Improving Many-Objective Evolutionary Algorithms by Means of Edge-Rotated Cones. PPSN (2) 2020: 313-326 - [c186]Jiawen Kong, Wojtek Kowalczyk, Stefan Menzel, Thomas Bäck:
Improving Imbalanced Classification by Anomaly Detection. PPSN (1) 2020: 512-523 - [c185]Furong Ye, Hao Wang, Carola Doerr, Thomas Bäck:
Benchmarking a (μ +λ ) Genetic Algorithm with Configurable Crossover Probability. PPSN (2) 2020: 699-713 - [c184]Yali Wang, André H. Deutz, Thomas Bäck, Michael Emmerich:
Edge-Rotated Cone Orders in Multi-objective Evolutionary Algorithms for Improved Convergence and Preference Articulation. SSCI 2020: 165-172 - [c183]Thiago Rios, Jiawen Kong, Bas van Stein, Thomas Bäck, Patricia Wollstadt, Bernhard Sendhoff, Stefan Menzel:
Back To Meshes: Optimal Simulation-ready Mesh Prototypes For Autoencoder-based 3D Car Point Clouds. SSCI 2020: 942-949 - [c182]Raphael Patrick Prager, Heike Trautmann, Hao Wang, Thomas Bäck, Pascal Kerschke:
Per-Instance Configuration of the Modularized CMA-ES by Means of Classifier Chains and Exploratory Landscape Analysis. SSCI 2020: 996-1003 - [c181]Bas van Stein, Hao Wang, Thomas Bäck:
Neural Network Design: Learning from Neural Architecture Search. SSCI 2020: 1341-1349 - [c180]Yali Wang, Bas van Stein, Thomas Bäck, Michael Emmerich:
A Tailored NSGA-III for Multi-objective Flexible Job Shop Scheduling. SSCI 2020: 2746-2753 - [c179]Sibghat Ullah, Duc Anh Nguyen, Hao Wang, Stefan Menzel, Bernhard Sendhoff, Thomas Bäck:
Exploring Dimensionality Reduction Techniques for Efficient Surrogate-Assisted optimization. SSCI 2020: 2965-2974 - [c178]Milan Koch, Hao Wang, Robert Bürgel, Thomas Bäck:
Towards Data-driven Services in Vehicles. VEHITS 2020: 45-52 - [e7]Juan Julián Merelo Guervós, Jonathan M. Garibaldi, Christian Wagner, Thomas Bäck, Kurosh Madani, Kevin Warwick:
Proceedings of the 12th International Joint Conference on Computational Intelligence, IJCCI 2020, Budapest, Hungary, November 2-4, 2020. SCITEPRESS 2020, ISBN 978-989-758-475-6 [contents] - [e6]Thomas Bäck, Mike Preuss, André H. Deutz, Hao Wang, Carola Doerr, Michael T. M. Emmerich, Heike Trautmann:
Parallel Problem Solving from Nature - PPSN XVI - 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I. Lecture Notes in Computer Science 12269, Springer 2020, ISBN 978-3-030-58111-4 [contents] - [e5]Thomas Bäck, Mike Preuss, André H. Deutz, Hao Wang, Carola Doerr, Michael T. M. Emmerich, Heike Trautmann:
Parallel Problem Solving from Nature - PPSN XVI - 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part II. Lecture Notes in Computer Science 12270, Springer 2020, ISBN 978-3-030-58114-5 [contents] - [d9]Rick Boks, Hao Wang, Thomas Bäck:
Experimental Results for the study "A Modular Hybridization of Particle Swarm Optimization and Differential Evolution". Zenodo, 2020 - [d8]Jiawen Kong, Wojtek Kowalczyk, Duc Anh Nguyen, Stefan Menzel, Thomas Bäck:
Hyperparameter Optimisation for Improving Classification under Class Imbalance. Zenodo, 2020 - [d7]Jiawen Kong, Thiago Rios, Wojtek Kowalczyk, Stefan Menzel, Thomas Bäck:
On the Performance of Oversampling Techniques for Class Imbalance Problems. Zenodo, 2020 - [d6]Markus Thill, Wolfgang Konen, Thomas Bäck:
MarkusThill/MGAB: The Mackey-Glass Anomaly Benchmark. Version v1.0.0. Zenodo, 2020 [all versions] - [d5]Markus Thill, Wolfgang Konen, Thomas Bäck:
MarkusThill/MGAB: The Mackey-Glass Anomaly Benchmark. Version v1.0.1. Zenodo, 2020 [all versions] - [d4]Sibghat Ullah, Hao Wang, Stefan Menzel, Thomas Bäck, Bernhard Sendhoff:
An Empirical Comparison of Meta-Modeling Techniques for Robust Design Optimization. Zenodo, 2020 - [d3]Furong Ye, Hao Wang, Carola Doerr, Thomas Bäck:
The Experimental Data Sets for the study "Benchmarking a (μ+λ) Genetic Algorithm withConfigurable Crossover Probability". Version 1. Zenodo, 2020 [all versions] - [d2]Furong Ye, Hao Wang, Carola Doerr, Thomas Bäck:
Experimental Data Sets for the study "Benchmarking a (μ+λ) Genetic Algorithm with Configurable Crossover Probability". Version 2. Zenodo, 2020 [all versions] - [d1]Furong Ye, Hao Wang, Carola Doerr, Thomas Bäck:
Experimental Data Sets for the study "Benchmarking a (μ+λ) Genetic Algorithm with Configurable Crossover Probability". Version 3. Zenodo, 2020 [all versions] - [i33]Andrés Camero, Hao Wang, Enrique Alba, Thomas Bäck:
Bayesian Neural Architecture Search using A Training-Free Performance Metric. CoRR abs/2001.10726 (2020) - [i32]Divyam Aggarwal, Dhish Kumar Saxena, Thomas Bäck, Michael Emmerich:
Real-World Airline Crew Pairing Optimization: Customized Genetic Algorithm versus Column Generation Method. CoRR abs/2003.03792 (2020) - [i31]Divyam Aggarwal, Dhish Kumar Saxena, Thomas Bäck, Michael Emmerich:
AirCROP: Airline Crew Pairing Optimizer for Complex Flight Networks Involving Multiple Crew Bases & Billion-Plus Variables. CoRR abs/2003.03994 (2020) - [i30]Divyam Aggarwal, Dhish Kumar Saxena, Thomas Bäck, Michael Emmerich:
On Initializing Airline Crew Pairing Optimization for Large-scale Complex Flight Networks. CoRR abs/2003.06423 (2020) - [i29]Yali Wang, Bas van Stein, Michael T. M. Emmerich, Thomas Bäck:
A Tailored NSGA-III Instantiation for Flexible Job Shop Scheduling. CoRR abs/2004.06564 (2020) - [i28]Yali Wang, André H. Deutz, Thomas Bäck, Michael T. M. Emmerich:
Improving Many-objective Evolutionary Algorithms by Means of Expanded Cone Orders. CoRR abs/2004.06941 (2020) - [i27]Anna V. Kononova, Fabio Caraffini, Thomas Bäck:
Differential evolution outside the box. CoRR abs/2004.10489 (2020) - [i26]Divyam Aggarwal, Dhish Kumar Saxena, Thomas Bäck, Michael Emmerich:
A Novel Column Generation Heuristic for Airline Crew Pairing Optimization with Large-scale Complex Flight Networks. CoRR abs/2005.08636 (2020) - [i25]Furong Ye, Hao Wang, Carola Doerr, Thomas Bäck:
Benchmarking a $(μ+λ)$ Genetic Algorithm with Configurable Crossover Probability. CoRR abs/2006.05889 (2020) - [i24]Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck:
Towards Dynamic Algorithm Selection for Numerical Black-Box Optimization: Investigating BBOB as a Use Case. CoRR abs/2006.06586 (2020) - [i23]Hugo Manuel Proença, Peter Grünwald, Thomas Bäck, Matthijs van Leeuwen:
Discovering outstanding subgroup lists for numeric targets using MDL. CoRR abs/2006.09186 (2020) - [i22]Rick Boks, Hao Wang, Thomas Bäck:
A Modular Hybridization of Particle Swarm Optimization and Differential Evolution. CoRR abs/2006.11886 (2020) - [i21]Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, Thomas Bäck:
IOHanalyzer: Performance Analysis for Iterative Optimization Heuristic. CoRR abs/2007.03953 (2020) - [i20]Bas van Stein, Hao Wang, Thomas Bäck:
Neural Network Design: Learning from Neural Architecture Search. CoRR abs/2011.00521 (2020) - [i19]Veysel Kocaman, Ofer M. Shir, Thomas Bäck:
Improving Model Accuracy for Imbalanced Image Classification Tasks by Adding a Final Batch Normalization Layer: An Empirical Study. CoRR abs/2011.06319 (2020)
2010 – 2019
- 2019
- [j34]Hao Wang, Michael Emmerich, Thomas Bäck:
Mirrored Orthogonal Sampling for Covariance Matrix Adaptation Evolution Strategies. Evol. Comput. 27(4): 699-725 (2019) - [j33]Kaifeng Yang, Michael Emmerich, André H. Deutz, Thomas Bäck:
Efficient computation of expected hypervolume improvement using box decomposition algorithms. J. Glob. Optim. 75(1): 3-34 (2019) - [j32]Kaifeng Yang, Michael Emmerich, André H. Deutz, Thomas Bäck:
Multi-Objective Bayesian Global Optimization using expected hypervolume improvement gradient. Swarm Evol. Comput. 44: 945-956 (2019) - [c177]Milan Koch, Victor Geraedts, Hao Wang, Martijn Tannemaat, Thomas Bäck:
Automated Machine Learning for EEG-Based Classification of Parkinson's Disease Patients. IEEE BigData 2019: 4845-4852 - [c176]Yali Wang, Steffen Limmer, Markus Olhofer, Michael T. M. Emmerich, Thomas Bäck:
Vehicle Fleet Maintenance Scheduling Optimization by Multi-objective Evolutionary Algorithms. CEC 2019: 442-449 - [c175]Furong Ye, Carola Doerr, Thomas Bäck:
Interpolating Local and Global Search by Controlling the Variance of Standard Bit Mutation. CEC 2019: 2292-2299 - [c174]Hao Wang, Yitan Lou, Thomas Bäck:
Hyper-Parameter Optimization for Improving the Performance of Grammatical Evolution. CEC 2019: 2649-2656 - [c173]Yali Wang, Michael Emmerich, André H. Deutz, Thomas Bäck:
Diversity-Indicator Based Multi-Objective Evolutionary Algorithm: DI-MOEA. EMO 2019: 346-358 - [c172]Alexander Hagg, Alexander Asteroth, Thomas Bäck:
Modeling user selection in quality diversity. GECCO 2019: 116-124 - [c171]Hao Wang, Thomas Bäck, Aske Plaat, Michael Emmerich, Mike Preuss:
On the potential of evolution strategies for neural network weight optimization. GECCO (Companion) 2019: 191-192 - [c170]Samineh Bagheri, Wolfgang Konen, Thomas Bäck:
Solving optimization problems with high conditioning by means of online whitening. GECCO (Companion) 2019: 243-244 - [c169]Naama Horesh, Thomas Bäck, Ofer M. Shir:
Predict or screen your expensive assay: DoE vs. surrogates in experimental combinatorial optimization. GECCO 2019: 274-284 - [c168]Pierluigi Frisco, Timo Bootsma, Thomas Bäck:
Multi-objective genetic algorithms for reducing mark read-out effort in lithographic tests. GECCO (Companion) 2019: 365-366 - [c167]Kaifeng Yang, Pramudita Satria Palar, Michael Emmerich, Koji Shimoyama, Thomas Bäck:
A multi-point mechanism of expected hypervolume improvement for parallel multi-objective bayesian global optimization. GECCO 2019: 656-663 - [c166]Diederick Vermetten, Sander van Rijn, Thomas Bäck, Carola Doerr:
Online selection of CMA-ES variants. GECCO 2019: 951-959 - [c165]Ofer M. Shir, Thomas Bäck:
Sequential experimentation by evolutionary algorithms. GECCO (Companion) 2019: 1095-1112 - [c164]Marios Kefalas, Steffen Limmer, Asteris Apostolidis, Markus Olhofer, Michael Emmerich, Thomas Bäck:
A tabu search-based memetic algorithm for the multi-objective flexible job shop scheduling problem. GECCO (Companion) 2019: 1254-1262 - [c163]Borja Calvo, Ofer M. Shir, Josu Ceberio, Carola Doerr, Hao Wang, Thomas Bäck, José Antonio Lozano:
Bayesian performance analysis for black-box optimization benchmarking. GECCO (Companion) 2019: 1789-1797 - [c162]Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M. Shir, Thomas Bäck:
Benchmarking discrete optimization heuristics with IOHprofiler. GECCO (Companion) 2019: 1798-1806 - [c161]Sneha Saha, Thiago Rios, Stefan Menzel, Bernhard Sendhoff, Thomas Bäck, Xin Yao, Zhao Xu, Patricia Wollstadt:
Learning Time-Series Data of Industrial Design Optimization using Recurrent Neural Networks. ICDM Workshops 2019: 785-792 - [c160]Bas van Stein, Hao Wang, Thomas Bäck:
Automatic Configuration of Deep Neural Networks with Parallel Efficient Global Optimization. IJCNN 2019: 1-7 - [c159]Sina Däubener, Sebastian Schmitt, Hao Wang, Peter Krause, Thomas Bäck:
Anomaly Detection in Univariate Time Series: An Empirical Comparison of Machine Learning Algorithms. ICDM 2019: 161-175 - [c158]Markus Thill, Sina Däubener, Wolfgang Konen, Thomas Bäck:
Anomaly Detection in Electrocardiogram Readings with Stacked LSTM Networks. ITAT 2019: 17-25 - [c157]Can Wang, Thomas Bäck, Holger H. Hoos, Mitra Baratchi, Steffen Limmer, Markus Olhofer:
Automated Machine Learning for Short-term Electric Load Forecasting. SSCI 2019: 314-321 - [c156]Thiago Rios, Bernhard Sendhoff, Stefan Menzel, Thomas Bäck, Bas van Stein:
On the Efficiency of a Point Cloud Autoencoder as a Geometric Representation for Shape Optimization. SSCI 2019: 791-798 - [c155]Sibghat Ullah, Hao Wang, Stefan Menzel, Bernhard Sendhoff, Thomas Bäck:
An Empirical Comparison of Meta-Modeling Techniques for Robust Design Optimization. SSCI 2019: 819-828 - [c154]Thiago Rios, Patricia Wollstadt, Bas van Stein, Thomas Bäck, Zhao Xu, Bernhard Sendhoff, Stefan Menzel:
Scalability of Learning Tasks on 3D CAE Models Using Point Cloud Autoencoders. SSCI 2019: 1367-1374 - [c153]Xin Guo, Bas van Stein, Thomas Bäck:
A New Approach Towards the Combined Algorithm Selection and Hyper-parameter Optimization Problem. SSCI 2019: 2042-2049 - [c152]Teddy Etoeharnowo, Koen Castelein, Hao Wang, Thomas Bäck:
Switching Between Swarm Optimization Algorithms During a Run: An Empirical Study. SSCI 2019: 2295-2302 - [c151]Jiawen Kong, Wojtek Kowalczyk, Duc Anh Nguyen, Thomas Bäck, Stefan Menzel:
Hyperparameter Optimisation for Improving Classification under Class Imbalance. SSCI 2019: 3072-3078 - [i18]Furong Ye, Carola Doerr, Thomas Bäck:
Interpolating Local and Global Search by Controlling the Variance of Standard Bit Mutation. CoRR abs/1901.05573 (2019) - [i17]Diederick Vermetten, Sander van Rijn, Thomas Bäck, Carola Doerr:
Online Selection of CMA-ES Variants. CoRR abs/1904.07801 (2019) - [i16]Samineh Bagheri, Wolfgang Konen, Thomas Bäck:
SACOBRA with Online Whitening for Solving Optimization Problems with High Conditioning. CoRR abs/1904.08397 (2019) - [i15]Kaifeng Yang, Michael Emmerich, André H. Deutz, Thomas Bäck:
Efficient Computation of Expected Hypervolume Improvement Using Box Decomposition Algorithms. CoRR abs/1904.12672 (2019) - [i14]Alexander Hagg, Alexander Asteroth, Thomas Bäck:
Modeling User Selection in Quality Diversity. CoRR abs/1907.06912 (2019) - [i13]Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck:
Sequential vs. Integrated Algorithm Selection and Configuration: A Case Study for the Modular CMA-ES. CoRR abs/1912.05899 (2019) - [i12]Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M. Shir, Thomas Bäck:
Benchmarking Discrete Optimization Heuristics with IOHprofiler. CoRR abs/1912.09237 (2019) - 2018
- [c150]Hao Wang, Michael Emmerich, Thomas Bäck:
Cooling Strategies for the Moment-Generating Function in Bayesian Global Optimization. CEC 2018: 1-8 - [c149]Sheir Yarkoni, Aske Plaat, Thomas Bäck:
First Results Solving Arbitrarily Structured Maximum Independent Set Problems Using Quantum Annealing. CEC 2018: 1-6 - [c148]Thomas Bäck:
Algorithms for Simulation-Based Optimization Problems. ECMS 2018: 5-7 - [c147]Koen van der Blom, Thomas Bäck:
A new foraging-based algorithm for online scheduling. GECCO 2018: 53-60 - [c146]Sander van Rijn, Sebastian Schmitt, Markus Olhofer, Matthijs van Leeuwen, Thomas Bäck:
Multi-fidelity surrogate model approach to optimization. GECCO (Companion) 2018: 225-226 - [c145]Hao Wang, Thomas Bäck:
Ranking empirical cumulative distribution functions using stochastic and pareto dominance. GECCO (Companion) 2018: 257-258 - [c144]Carola Doerr, Furong Ye, Sander van Rijn, Hao Wang, Thomas Bäck:
Towards a theory-guided benchmarking suite for discrete black-box optimization heuristics: profiling (1 + λ) EA variants on onemax and leadingones. GECCO 2018: 951-958 - [c143]Ofer M. Shir, Thomas Bäck:
Sequential experimentation by evolutionary algorithms. GECCO (Companion) 2018: 956-976 - [c142]Pramudita Satria Palar, Kaifeng Yang, Koji Shimoyama, Michael Emmerich, Thomas Bäck:
Multi-objective aerodynamic design with user preference using truncated expected hypervolume improvement. GECCO 2018: 1333-1340 - [c141]Ofer M. Shir, Carola Doerr, Thomas Bäck:
Compiling a benchmarking test-suite for combinatorial black-box optimization: a position paper. GECCO (Companion) 2018: 1753-1760 - [c140]Milan Koch, Hao Wang, Thomas Bäck:
Machine Learning for Predicting the Damaged Parts of a Low Speed Vehicle Crash. ICDIM 2018: 179-184 - [c139]Milan Koch, Thomas Bäck:
Machine Learning for Predicting the Impact Point of a Low Speed Vehicle Crash. ICMLA 2018: 1432-1437 - [c138]Theodoros Georgiou, Sebastian Schmitt, Markus Olhofer, Yu Liu, Thomas Bäck, Michael S. Lew:
Learning Fluid Flows. IJCNN 2018: 1-8 - [c137]Bas van Stein, Hao Wang, Wojtek Kowalczyk, Thomas Bäck:
A Novel Uncertainty Quantification Method for Efficient Global Optimization. IPMU (3) 2018: 480-491 - [c136]Roy de Winter, Bas van Stein, Matthys Dijkman, Thomas Bäck:
Designing Ships Using Constrained Multi-objective Efficient Global Optimization. LOD 2018: 191-203 - [c135]Sander van Rijn, Carola Doerr, Thomas Bäck:
Towards an Adaptive CMA-ES Configurator. PPSN (1) 2018: 54-65 - [c134]Alexander Hagg, Alexander Asteroth, Thomas Bäck:
Prototype Discovery Using Quality-Diversity. PPSN (1) 2018: 500-511 - [c133]Hugo Manuel Proença, Ruben Klijn, Thomas Bäck, Matthijs van Leeuwen:
Identifying flight delay patterns using diverse subgroup discovery. SSCI 2018: 60-67 - [i11]Alexander Hagg, Alexander Asteroth, Thomas Bäck:
Prototype Discovery using Quality-Diversity. CoRR abs/1807.09488 (2018) - [i10]Carola Doerr, Furong Ye, Sander van Rijn, Hao Wang, Thomas Bäck:
Towards a Theory-Guided Benchmarking Suite for Discrete Black-Box Optimization Heuristics: Profiling (1+λ) EA Variants on OneMax and LeadingOnes. CoRR abs/1808.05850 (2018) - [i9]Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, Thomas Bäck:
IOHprofiler: A Benchmarking and Profiling Tool for Iterative Optimization Heuristics. CoRR abs/1810.05281 (2018) - [i8]Bas van Stein, Hao Wang, Thomas Bäck:
Automatic Configuration of Deep Neural Networks with EGO. CoRR abs/1810.05526 (2018) - 2017
- [j31]Samineh Bagheri, Wolfgang Konen, Michael Emmerich, Thomas Bäck:
Self-adjusting parameter control for surrogate-assisted constrained optimization under limited budgets. Appl. Soft Comput. 61: 377-393 (2017) - [j30]Jiaqi Zhao, Vitor Basto-Fernandes, Licheng Jiao, Iryna Yevseyeva, Asep Maulana, Rui Li, Thomas Bäck, Ke Tang, Michael T. M. Emmerich:
Corrigendum to 'Multiobjective optimization of classifiers by means of 3D convex-hull-based evolutionary algorithms' [Information Sciences volumes 367-368 (2016) 80-104]. Inf. Sci. 403: 55 (2017) - [j29]Zhiwei Yang, Jan-Paul van Osta, Barry D. Van Veen, Rick van Krevelen, Richard van Klaveren, Andries Stam, Joost N. Kok, Thomas Bäck, Michael Emmerich:
Dynamic vehicle routing with time windows in theory and practice. Nat. Comput. 16(1): 119-134 (2017) - [c132]Koen van der Blom, Sjonnie Boonstra, Hèrm Hofmeyer, Thomas Bäck, Michael T. M. Emmerich:
Configuring advanced evolutionary algorithms for multicriteria building spatial design optimisation. CEC 2017: 1803-1810 - [c131]Markus Thill, Wolfgang Konen, Thomas Bäck:
Online anomaly detection on the webscope S5 dataset: A comparative study. EAIS 2017: 1-8 - [c130]Hao Wang, André H. Deutz, Thomas Bäck, Michael Emmerich:
Hypervolume Indicator Gradient Ascent Multi-objective Optimization. EMO 2017: 654-669 - [c129]Sander van Rijn, Hao Wang, Bas van Stein, Thomas Bäck:
Algorithm configuration data mining for CMA evolution strategies. GECCO 2017: 737-744 - [c128]Ofer M. Shir, Thomas Bäck, Joshua D. Knowles, Richard Allmendinger:
Sequential experimentation by evolutionary algorithms. GECCO (Companion) 2017: 828-851 - [c127]Hao Wang, Bas van Stein, Michael T. M. Emmerich, Thomas Bäck:
Time complexity reduction in efficient global optimization using cluster kriging. GECCO 2017: 889-896 - [c126]Marco Schönfelder, Valentin Protschky, Thomas Bäck:
Reconstructing fixed time traffic light cycles by camera data analytics. ITSC 2017: 1-7 - [c125]Thierry van der Spek, Bas van Stein, Marcel van der Holst, Thomas Bäck:
A multi-method simulation of a high-frequency bus line. ITSC 2017: 1-6 - [c124]Sheir Yarkoni, Hao Wang, Aske Plaat, Thomas Bäck:
Boosting Quantum Annealing Performance Using Evolution Strategies for Annealing Offsets Tuning. QTOP@NetSys 2017: 157-168 - [c123]Hao Wang, Bas van Stein, Michael Emmerich, Thomas Bäck:
A new acquisition function for Bayesian optimization based on the moment-generating function. SMC 2017: 507-512 - [i7]Bas van Stein, Hao Wang, Wojtek Kowalczyk, Michael T. M. Emmerich, Thomas Bäck:
Cluster-based Kriging Approximation Algorithms for Complexity Reduction. CoRR abs/1702.01313 (2017) - [i6]Martin Hofmann, Florian Neukart, Thomas Bäck:
Artificial Intelligence and Data Science in the Automotive Industry. CoRR abs/1709.01989 (2017) - 2016
- [j28]Zhiwei Yang, Michael Emmerich, Thomas Bäck, Joost N. Kok:
Multi-objective inventory routing with uncertain demand using population-based metaheuristics. Integr. Comput. Aided Eng. 23(3): 205-220 (2016) - [j27]Jiaqi Zhao, Vitor Basto-Fernandes, Licheng Jiao, Iryna Yevseyeva, Asep Maulana, Rui Li, Thomas Bäck, Ke Tang, Michael T. M. Emmerich:
Multiobjective optimization of classifiers by means of 3D convex-hull-based evolutionary algorithms. Inf. Sci. 367-368: 80-104 (2016) - [c122]Bas van Stein, Matthijs van Leeuwen, Thomas Bäck:
Local subspace-based outlier detection using global neighbourhoods. IEEE BigData 2016: 1136-1142 - [c121]Hao Wang, Michael T. M. Emmerich, Thomas Bäck:
Balancing risk and expected gain in kriging-based global optimization. CEC 2016: 719-727 - [c120]Samineh Bagheri, Wolfgang Konen, Thomas Bäck:
Equality constraint handling for surrogate-assisted constrained optimization. CEC 2016: 1924-1931 - [c119]Kaifeng Yang, André H. Deutz, Zhiwei Yang, Thomas Bäck, Michael T. M. Emmerich:
Truncated expected hypervolume improvement: Exact computation and application. CEC 2016: 4350-4357 - [c118]Bas van Stein, Hao Wang, Wojtek Kowalczyk, Michael T. M. Emmerich, Thomas Bäck:
Fuzzy clustering for Optimally Weighted Cluster Kriging. FUZZ-IEEE 2016: 939-945 - [c117]Maren Urselmann, Christophe Foussette, Tim Janus, Stephen Tlatlik, Axel Gottschalk, Michael T. M. Emmerich, Sebastian Engell, Thomas Bäck:
Selection of a DFO Method for the Efficient Solution of Continuous Constrained Sub-Problems within a Memetic Algorithm for Chemical Process Synthesis. GECCO 2016: 1029-1036 - [c116]Kaifeng Yang, Longmei Li, André H. Deutz, Thomas Bäck, Michael Emmerich:
Preference-based multiobjective optimization using truncated expected hypervolume improvement. ICNC-FSKD 2016: 276-281 - [c115]Zhiwei Yang, Hao Wang, Kaifeng Yang, Thomas Bäck, Michael Emmerich:
SMS-EMOA with multiple dynamic reference points. ICNC-FSKD 2016: 282-288 - [c114]Bas van Stein, Wojtek Kowalczyk, Thomas Bäck:
Analysis and Visualization of Missing Value Patterns. IPMU (2) 2016: 187-198 - [c113]Samineh Bagheri, Wolfgang Konen, Thomas Bäck:
Online selection of surrogate models for constrained black-box optimization. SSCI 2016: 1-8 - [c112]Pepijn Van Heiningen, Bas van Stein, Thomas Bäck:
A framework for evaluating meta-models for simulation-based optimisation. SSCI 2016: 1-8 - [c111]Sander van Rijn, Hao Wang, Matthijs van Leeuwen, Thomas Bäck:
Evolving the structure of Evolution Strategies. SSCI 2016: 1-8 - [i5]Sander van Rijn, Hao Wang, Matthijs van Leeuwen, Thomas Bäck:
Evolving the Structure of Evolution Strategies. CoRR abs/1610.05231 (2016) - [i4]Bas van Stein, Matthijs van Leeuwen, Thomas Bäck:
Local Subspace-Based Outlier Detection using Global Neighbourhoods. CoRR abs/1611.00183 (2016) - 2015
- [j26]Patrick Koch, Tobias Wagner, Michael T. M. Emmerich, Thomas Bäck, Wolfgang Konen:
Efficient multi-criteria optimization on noisy machine learning problems. Appl. Soft Comput. 29: 357-370 (2015) - [j25]Pu Wang, Michael Emmerich, Rui Li, Ke Tang, Thomas Bäck, Xin Yao:
Convex Hull-Based Multiobjective Genetic Programming for Maximizing Receiver Operating Characteristic Performance. IEEE Trans. Evol. Comput. 19(2): 188-200 (2015) - [c110]Sander van Rijn, Michael T. M. Emmerich, Edgar Reehuis, Thomas Bäck:
Optimizing Highly Constrained Truck Loadings Using a Self-Adaptive Genetic Algorithm. CEC 2015: 227-234 - [c109]Joost Leuven, Michael Emmerich, Edgar Reehuis, Thomas Bäck:
User-derived mutation in highly constrained Truck Loading Optimization. CEC 2015: 235-242 - [c108]Kaifeng Yang, Daniel Gaida, Thomas Bäck, Michael Emmerich:
Expected hypervolume improvement algorithm for PID controller tuning and the multiobjective dynamical control of a biogas plant. CEC 2015: 1934-1942 - [c107]Zhiwei Yang, Michael Emmerich, Thomas Bäck:
Ant based solver for dynamic vehicle routing problem with time windows and multiple priorities. CEC 2015: 2813-2819 - [c106]Xiaoke Zhang, Jun Wu, Cuiying Duan, Michael T. M. Emmerich, Thomas Bäck:
Towards robustness optimization of complex networks based on redundancy backup. CEC 2015: 2820-2826 - [c105]Asep Maulana, Zhongzhou Jiang, Jing Liu, Thomas Bäck, Michael T. M. Emmerich:
Reducing complexity in many objective optimization using community detection. CEC 2015: 3140-3147 - [c104]Hao Wang, Thomas Bäck, Michael T. M. Emmerich:
Multi-point Efficient Global Optimization Using Niching Evolution Strategy. EVOLVE 2015: 146-162 - [c103]Patrick Koch, Samineh Bagheri, Wolfgang Konen, Christophe Foussette, Peter Krause, Thomas Bäck:
A New Repair Method For Constrained Optimization. GECCO 2015: 273-280 - [c102]Bas van Stein, Hao Wang, Wojtek Kowalczyk, Thomas Bäck, Michael Emmerich:
Optimally Weighted Cluster Kriging for Big Data Regression. IDA 2015: 310-321 - [c101]Zhiwei Yang, Michael Emmerich, Thomas Bäck, Joost N. Kok:
Multicriteria Inventory Routing by Cooperative Swarms and Evolutionary Algorithms. IWINAC (2) 2015: 127-137 - [c100]Pepijn Van Heiningen, Edgar Reehuis, Thomas Bäck:
Comparing a Weiszfeld's-Based Procedure and (1+1)-es for Solving the Planar Single-Facility Location-Routing Problem. SSCI 2015: 1743-1750 - [i3]Samineh Bagheri, Wolfgang Konen, Michael Emmerich, Thomas Bäck:
Solving the G-problems in less than 500 iterations: Improved efficient constrained optimization by surrogate modeling and adaptive parameter control. CoRR abs/1512.09251 (2015) - 2014
- [c99]Thomas Bäck:
Introduction to evolution strategies. GECCO (Companion) 2014: 251-280 - [c98]Kaifeng Yang, Michael T. M. Emmerich, Rui Li, Ji Wang, Thomas Bäck:
Power Distribution Network Reconfiguration by Evolutionary Integer Programming. PPSN 2014: 11-23 - [c97]Hao Wang, Michael Emmerich, Thomas Bäck:
Mirrored orthogonal sampling with pairwise selection in evolution strategies. SAC 2014: 154-156 - [i2]Jiaqi Zhao, Vitor Basto-Fernandes, Licheng Jiao, Iryna Yevseyeva, Asep Maulana, Rui Li, Thomas Bäck, Michael T. M. Emmerich:
Multiobjective Optimization of Classifiers by Means of 3-D Convex Hull Based Evolutionary Algorithm. CoRR abs/1412.5710 (2014) - 2013
- [b3]Thomas Bäck, Christophe Foussette, Peter Krause:
Contemporary Evolution Strategies. Natural Computing Series, Springer 2013, ISBN 978-3-642-40136-7, pp. 1-86 - [j24]Rui Li, Michael T. M. Emmerich, Jeroen Eggermont, Thomas Bäck, Martin Schütz, Jouke Dijkstra, Johan H. C. Reiber:
Mixed Integer Evolution Strategies for Parameter Optimization. Evol. Comput. 21(1): 29-64 (2013) - [c96]Christoph Johann Stettina, Zhao Zhou, Thomas Bäck, Bernhard R. Katzy:
Academic education of software engineering practices: towards planning and improving capstone courses based upon intensive coaching and team routines. CSEE&T 2013: 169-178 - [c95]Thomas Bäck:
Evolution strategies: basic introduction. GECCO (Companion) 2013: 265-292 - [c94]Edgar Reehuis, Markus Olhofer, Michael Emmerich, Bernhard Sendhoff, Thomas Bäck:
Novelty and interestingness measures for design-space exploration. GECCO 2013: 1541-1548 - [c93]Edgar Reehuis, Markus Olhofer, Bernhard Sendhoff, Thomas Bäck:
Learning-Guided Exploration in Airfoil Optimization. IDEAL 2013: 505-512 - [c92]Barry D. Van Veen, Michael Emmerich, Zhiwei Yang, Thomas Bäck, Joost N. Kok:
Ant Colony Algorithms for the Dynamic Vehicle Routing Problem with Time Windows. IWINAC (2) 2013: 1-10 - [i1]Pu Wang, Michael Emmerich, Rui Li, Ke Tang, Thomas Bäck, Xin Yao:
Convex Hull-Based Multi-objective Genetic Programming for Maximizing ROC Performance. CoRR abs/1303.3145 (2013) - 2012
- [c91]Stefan Wink, Thomas Bäck, Michael T. M. Emmerich:
A meta-genetic algorithm for solving the Capacitated Vehicle Routing Problem. IEEE Congress on Evolutionary Computation 2012: 1-8 - [c90]Thomas Bäck:
Evolution strategies: basic introduction. GECCO (Companion) 2012: 711-736 - [c89]Jelle de Groot, Ariadi Nugroho, Thomas Bäck, Joost Visser:
What is the value of your software? MTD@ICSE 2012: 37-44 - [e4]Grzegorz Rozenberg, Thomas Bäck, Joost N. Kok:
Handbook of Natural Computing. Springer 2012, ISBN 978-3-540-92909-3 [contents] - 2011
- [c88]Thomas Bäck:
Evolution strategies: basic introduction. GECCO (Companion) 2011: 875-898 - [c87]Johannes W. Kruisselbrink, Edgar Reehuis, André H. Deutz, Thomas Bäck, Michael Emmerich:
Using the uncertainty handling CMA-ES for finding robust optima. GECCO 2011: 877-884 - [c86]Johannes W. Kruisselbrink, Rui Li, Edgar Reehuis, Jeroen Eggermont, Thomas Bäck:
On the log-normal self-adaptation of the mutation rate in binary search spaces. GECCO 2011: 893-900 - [c85]Thomas Bäck, Lutz Keßler, Ingo Heinle:
Evolutionary strategies for identification and validation of material model parameters for forming simulations. GECCO 2011: 1779-1786 - 2010
- [j23]Ofer M. Shir, Michael Emmerich, Thomas Bäck:
Adaptive Niche Radii and Niche Shapes Approaches for Niching with the CMA-ES. Evol. Comput. 18(1): 97-126 (2010) - [c84]Johannes W. Kruisselbrink, Michael T. M. Emmerich, André H. Deutz, Thomas Bäck:
A robust optimization approach using Kriging metamodels for robustness approximation in the CMA-ES. IEEE Congress on Evolutionary Computation 2010: 1-8 - [c83]Edgar Reehuis, Thomas Bäck:
Mixed-integer evolution strategy using multiobjective selection applied to warehouse design optimization. GECCO 2010: 1187-1194 - [c82]Thomas Bäck:
Evolution strategies: basic introduction. GECCO (Companion) 2010: 2263-2288 - [c81]Thomas Bäck, Joshua D. Knowles, Ofer M. Shir:
Experimental optimization by evolutionary algorithms. GECCO (Companion) 2010: 2897-2916 - [c80]Johannes W. Kruisselbrink, Michael Emmerich, André H. Deutz, Thomas Bäck:
Exploiting Overlap When Searching for Robust Optima. PPSN (1) 2010: 63-72 - [c79]Johannes W. Kruisselbrink, Michael Emmerich, Thomas Bäck:
An Archive Maintenance Scheme for Finding Robust Solutions. PPSN (1) 2010: 214-223
2000 – 2009
- 2009
- [j22]Ofer M. Shir, Thomas Bäck:
Niching with derandomized evolution strategies in artificial and real-world landscapes. Nat. Comput. 8(1): 171-196 (2009) - [c78]Ofer M. Shir, Thomas Bäck:
Niching Methods: Speciation Theory Applied for Multi-modal Function Optimization. Algorithmic Bioprocesses 2009: 705-729 - [c77]Johannes W. Kruisselbrink, Michael T. M. Emmerich, Thomas Bäck, Andreas Bender, Adriaan P. IJzerman, Eelke van der Horst:
Combining Aggregation with Pareto Optimization: A Case Study in Evolutionary Molecular Design. EMO 2009: 453-467 - [c76]Johannes W. Kruisselbrink, Alexander Aleman, Michael T. M. Emmerich, Adriaan P. IJzerman, Andreas Bender, Thomas Bäck, Eelke van der Horst:
Enhancing search space diversity in multi-objective evolutionary drug molecule design using niching. GECCO 2009: 217-224 - [c75]Johannes W. Kruisselbrink, Michael T. M. Emmerich, Thomas Bäck:
On the limitations of adaptive resampling in using the student's t-test evolution strategies. GECCO (Companion) 2009: 2649-2656 - [c74]Juan Chen, Michael T. M. Emmerich, Rui Li, Joost N. Kok, Thomas Bäck:
How to Do Recombination in Evolution Strategies: An Empirical Study. IWINAC (1) 2009: 223-232 - 2008
- [j21]Thomas Bäck, Michael Emmerich, Ofer M. Shir:
Evolutionary algorithms for real world applications [Application Notes]. IEEE Comput. Intell. Mag. 3(1): 64-67 (2008) - [c73]Ofer M. Shir, Thomas Bäck, Herschel Rabitz, Marc J. J. Vrakking:
On the evolution of laser pulses under a dynamic Quantum Control environment. IEEE Congress on Evolutionary Computation 2008: 2127-2134 - [c72]Rui Li, Michael T. M. Emmerich, Jeroen Eggermont, Ernst G. P. Bovenkamp, Thomas Bäck, Jouke Dijkstra, Johan H. C. Reiber:
Metamodel-assisted mixed integer evolution strategies and their application to intravascular ultrasound image analysis. IEEE Congress on Evolutionary Computation 2008: 2764-2771 - [c71]Jeroen Eggermont, Rui Li, Ernst G. P. Bovenkamp, Henk A. Marquering, Michael T. M. Emmerich, Aad van der Lugt, Thomas Bäck, Jouke Dijkstra, Johan H. C. Reiber:
Optimizing Computed Tomographic Angiography Image Segmentation Using Fitness Based Partitioning. EvoWorkshops 2008: 275-284 - [c70]Ofer M. Shir, Jonathan Roslund, Thomas Bäck, Herschel Rabitz:
Performance analysis of derandomized evolution strategies in quantum control experiments. GECCO 2008: 519-526 - [c69]Ron Breukelaar, Thomas Bäck:
Self-adaptive mutation rates in genetic algorithm for inverse design of cellular automata. GECCO 2008: 1101-1102 - [c68]Johannes W. Kruisselbrink, Thomas Bäck, Adriaan P. IJzerman, Eelke van der Horst:
Evolutionary algorithms for automated drug design towards target molecule properties. GECCO 2008: 1555-1562 - [c67]Thomas Bäck:
Evolution strategies: basic introduction. GECCO (Companion) 2008: 2259-2276 - [c66]Jan Willem Klinkenberg, Michael T. M. Emmerich, André H. Deutz, Ofer M. Shir, Thomas Bäck:
A Reduced-Cost SMS-EMOA Using Kriging, Self-Adaptation, and Parallelization. MCDM 2008: 301-311 - [c65]Vincent van der Goes, Ofer M. Shir, Thomas Bäck:
Niche Radius Adaptation with Asymmetric Sharing. PPSN 2008: 195-204 - [c64]Rui Li, Jeroen Eggermont, Ofer M. Shir, Michael T. M. Emmerich, Thomas Bäck, Jouke Dijkstra, Johan H. C. Reiber:
Mixed-Integer Evolution Strategies with Dynamic Niching. PPSN 2008: 246-255 - 2007
- [j20]Christiaan V. Henkel, Thomas Bäck, Joost N. Kok, Grzegorz Rozenberg, Herman P. Spaink:
DNA computing of solutions to knapsack problems. Biosyst. 88(1-2): 156-162 (2007) - [j19]Thomas Bäck, Benedikt Löwe:
Computing and the natural sciences at CiE 2005. Theor. Comput. Sci. 371(1-2): 1-3 (2007) - [c63]Riccardo Fanciulli, Lars Willmes, Janne Savolainen, Peter van der Walle, Thomas Bäck, Jennifer L. Herek:
Evolution Strategies for Laser Pulse Compression. Artificial Evolution 2007: 219-230 - [c62]Ofer M. Shir, Michael Emmerich, Thomas Bäck:
Self-Adaptive Niching CMA-ES with Mahalanobis Metric. IEEE Congress on Evolutionary Computation 2007: 820-827 - [c61]Ofer M. Shir, Michael Emmerich, Thomas Bäck, Marc J. J. Vrakking:
The application of evolutionary multi-criteria optimization to dynamic molecular alignment. IEEE Congress on Evolutionary Computation 2007: 4108-4115 - [c60]Ofer M. Shir, Vered Raz, Roeland W. Dirks, Thomas Bäck:
Classification of Cell Fates with Support Vector Machine Learning. EvoBIO 2007: 258-269 - [c59]Rui Li, Jeroen Eggermont, Michael T. M. Emmerich, Ernst G. P. Bovenkamp, Thomas Bäck, Jouke Dijkstra, Johan H. C. Reiber:
Towards Dynamic Fitness Based Partitioning for IntraVascular UltraSound Image Analysis. EvoWorkshops 2007: 391-398 - [c58]Ofer M. Shir, Thomas Bäck:
Performance analysis of niching algorithms based on derandomized-ES variants. GECCO 2007: 705-712 - [c57]Ofer M. Shir, Thomas Bäck:
The second harmonic generation case-study as a gateway for es to quantum control problems. GECCO 2007: 713-721 - [c56]Ofer M. Shir, Thomas Bäck, Marc J. J. Vrakking:
On the scalability of evolution strategies in the optimization of dynamic molecular alignment. GECCO 2007: 2266 - [c55]Ofer M. Shir, Joost N. Kok, Thomas Bäck, Marc J. J. Vrakking:
Gaining Insights into Laser Pulse Shaping by Evolution Strategies. IWINAC (1) 2007: 467-477 - 2006
- [j18]Eric-Wubbo Lameijer, Joost N. Kok, Thomas Bäck, Adriaan P. IJzerman:
The Molecule Evoluator. An Interactive Evolutionary Algorithm for the Design of Drug-Like Molecules. J. Chem. Inf. Model. 46(2): 545-552 (2006) - [j17]Eric-Wubbo Lameijer, Joost N. Kok, Thomas Bäck, Adriaan P. IJzerman:
Mining a Chemical Database for Fragment Co-occurrence: Discovery of "Chemical Clichés". J. Chem. Inf. Model. 46(2): 553-562 (2006) - [j16]Jeroen Kazius, Siegfried Nijssen, Joost N. Kok, Thomas Bäck, Adriaan P. IJzerman:
Substructure Mining Using Elaborate Chemical Representation. J. Chem. Inf. Model. 46(2): 597-605 (2006) - [c54]Ofer M. Shir, Christian Siedschlag, Thomas Bäck, Marc J. J. Vrakking:
Evolutionary Algorithms in the Optimization of Dynamic Molecular Alignment. IEEE Congress on Evolutionary Computation 2006: 2912-2919 - [c53]Rui Li, Michael Emmerich, Ernst G. P. Bovenkamp, Jeroen Eggermont, Thomas Bäck, Jouke Dijkstra, Johan H. C. Reiber:
Mixed-Integer Evolution Strategies and Their Application to Intravascular Ultrasound Image Analysis. EvoWorkshops 2006: 415-426 - [c52]Ron Breukelaar, Michael Emmerich, Thomas Bäck:
On Interactive Evolution Strategies. EvoWorkshops 2006: 530-541 - [c51]Ofer M. Shir, Christian Siedschlag, Thomas Bäck, Marc J. J. Vrakking:
The complete-basis-functions parameterization in ES and its application to laser pulse shaping. GECCO 2006: 1769-1776 - [c50]Ofer M. Shir, Joost N. Kok, Thomas Bäck, Marc J. J. Vrakking:
Learning the Complete-Basis-Functions Parameterization for the Optimization of Dynamic Molecular Alignment by ES. IDEAL 2006: 410-418 - [c49]Rui Li, Michael T. M. Emmerich, Jeroen Eggermont, Ernst G. P. Bovenkamp, Thomas Bäck, Jouke Dijkstra, Johan H. C. Reiber:
Mixed-Integer NK Landscapes. PPSN 2006: 42-51 - [c48]Ofer M. Shir, Thomas Bäck:
Niche Radius Adaptation in the CMA-ES Niching Algorithm. PPSN 2006: 142-151 - 2005
- [j15]Eric-Wubbo Lameijer, Thomas Bäck, Joost N. Kok, Adriaan P. IJzerman:
Evolutionary Algorithms in Drug Design. Nat. Comput. 4(3): 177-243 (2005) - [c47]Ofer M. Shir, Christian Siedschlag, Thomas Bäck, Marc J. J. Vrakking:
Niching in Evolution Strategies and Its Application to Laser Pulse Shaping. Artificial Evolution 2005: 85-96 - [c46]Ofer M. Shir, Thomas Bäck:
Dynamic niching in evolution strategies with covariance matrix adaptation. Congress on Evolutionary Computation 2005: 2584-2591 - [c45]Ron Breukelaar, Thomas Bäck:
Using a genetic algorithm to evolve behavior in multi dimensional cellular automata: emergence of behavior. GECCO 2005: 107-114 - [c44]Ofer M. Shir, Thomas Bäck:
Niching in evolution strategies. GECCO 2005: 915-916 - [c43]Elena V. Samsonova, Thomas Bäck, Joost N. Kok, Adriaan P. IJzerman:
Reliable Hierarchical Clustering with the Self-organizing Map. IDA 2005: 385-396 - [c42]Thomas Bäck, Ron Breukelaar:
Using Genetic Algorithms to Evolve Behavior in Cellular Automata. UC 2005: 1-10 - 2004
- [j14]Jano I. van Hemert, Thomas Bäck:
Robust Parameter Settings for Variation Operators by Measuring the Resampling Ratio: A Study on Binary Constraint Satisfaction Problems. J. Heuristics 10(6): 629-640 (2004) - [j13]Thomas Bäck, Lars Willmes, Peter Krause:
Industrial Optimization by Evolution Strategies: A Bioinspired Optimization Algorithm. Informatica (Slovenia) 28(4): 337-344 (2004) - [j12]Thomas Bäck, Marc Schoenauer, Lars Willmes:
Preface. Nat. Comput. 3(1): 1-3 (2004) - [c41]Ron Breukelaar, Thomas Bäck:
Evolving Transition Rules for Multi Dimensional Cellular Automata. ACRI 2004: 182-191 - [c40]Thomas Bäck, Ron Breukelaar, Lars Willmes:
Inverse Design of Cellular Automata by Genetic Algorithms: An Unconventional Programming Paradigm. UPP 2004: 161-172 - 2003
- [j11]Siegfried Nijssen, Thomas Bäck:
An analysis of the behavior of simplified evolutionary algorithms on trap functions. IEEE Trans. Evol. Comput. 7(1): 11-22 (2003) - [c39]Lars Willmes, Thomas Bäck, Yaochu Jin, Bernhard Sendhoff:
Comparing neural networks and Kriging for fitness approximation in evolutionary optimization. IEEE Congress on Evolutionary Computation 2003: 663-670 - [c38]Lars Willmes, Thomas Bäck:
Multi-criteria Airfoil Design with Evolution Strategies. EMO 2003: 782-795 - [c37]Elena V. Samsonova, Thomas Bäck, Margot W. Beukers, Adriaan P. IJzerman, Joost N. Kok:
Combining and Comparing Cluster Methods in a Receptor Database. IDA 2003: 341-351 - 2002
- [j10]Thomas Bäck:
Evolutionary Computation: A Guided Tour. Bull. EATCS 77: 132-166 (2002) - [j9]Thomas Bäck:
Adaptive business intelligence based on evolution strategies: some application examples of self-adaptive software. Inf. Sci. 148(1-4): 113-121 (2002) - [c36]Boris Naujoks, Werner Haase, Jörg Ziegenhirt, Thomas Bäck:
Multi Objective Airfoil Design Using Single Parent Populations. GECCO 2002: 1156-1163 - [c35]Thomas Bäck:
Adaptive Business Intelligence Based on Evolution Strategies: Some Application Examples of Self-Adaptive Software. JCIS 2002: 2-6 - [c34]Thomas Bäck, Daniel Vermeulen, A. E. Eiben:
Effects of Tax and Evolution in an Artificial Society. JCIS 2002: 1151-1156 - [c33]Jano I. van Hemert, Thomas Bäck:
Measuring the Searched Space to Guide Efficiency: The Principle and Evidence on Constraint Satisfaction. PPSN 2002: 23-32 - [c32]Michael Emmerich, Alexios Giotis, Mutlu Özdemir, Thomas Bäck, Kyriakos C. Giannakoglou:
Metamodel-Assisted Evolution Strategies. PPSN 2002: 361-370 - [c31]Boris Naujoks, Lars Willmes, Thomas Bäck, Werner Haase:
Evaluating Multi-criteria Evolutionary Algorithms for Airfoil Optimisation. PPSN 2002: 841-850 - 2001
- [c30]Sandor Markon, Dirk V. Arnold, Thomas Bäck, Thomas Beielstein, Hans-Georg Beyer:
Thresholding-a selection operator for noisy ES. CEC 2001: 465-472 - [p1]Thomas Bäck, Jeannette M. de Graaf, Joost N. Kok, Walter A. Kosters:
Theory of Genetic Algorithms. Current Trends in Theoretical Computer Science 2001: 546-578 - 2000
- [c29]Ben Paechter, Thomas Bäck, Marc Schoenauer, Michèle Sebag, Ágoston E. Eiben, Juan Julián Merelo, Terence C. Fogarty:
A Distributed Resource Evolutionary Algorithm Machine (DREAM). CEC 2000: 951-958 - [c28]Thomas Bäck, A. E. Eiben, Nikolai A. L. van der Vaart:
An Empirical Study on GAs "Without Parameters". PPSN 2000: 315-324
1990 – 1999
- 1999
- [c27]Thomas Bäck, Joost N. Kok, Grzegorz Rozenberg:
Cross-fertilization between evolutionary computation and DNA-based computing. CEC 1999: 980-987 - [c26]Thomas Bäck, Ágoston E. Eiben:
Generalizations of intermediate recombination in evolution strategies. CEC 1999: 1566-1573 - [c25]Thomas Bäck, Martin Schütz, Raúl Héctor Gallard, Guillermo Leguizamón:
Improved Evolutionary Algorithms for Scheduling Problems. German-Argentinian Workshop on Information Technology 1999: 61-68 - 1998
- [j8]Thomas Bäck:
An Overview of Parameter Control Methods by Self-Adaption in Evolutionary Algorithms. Fundam. Informaticae 35(1-4): 51-66 (1998) - [j7]Dirk Wiesmann, Ulrich Hammel, Thomas Bäck:
Robust design of multilayer optical coatings by means of evolutionary algorithms. IEEE Trans. Evol. Comput. 2(4): 162-167 (1998) - [c24]Thomas Bäck, A. E. Eiben, Marco E. Vink:
A Superior Evolutionary Algorithm for 3-SAT. Evolutionary Programming 1998: 125-136 - [e3]A. E. Eiben, Thomas Bäck, Marc Schoenauer, Hans-Paul Schwefel:
Parallel Problem Solving from Nature - PPSN V, 5th International Conference, Amsterdam, The Netherlands, September 27-30, 1998, Proceedings. Lecture Notes in Computer Science 1498, Springer 1998, ISBN 3-540-65078-4 [contents] - 1997
- [j6]Thomas Bäck:
Evolutionary computation: Toward a new philosophy of machine intelligence. Complex. 2(4): 28-30 (1997) - [j5]A. E. Eiben, Thomas Bäck:
Empirical Investigation of Multiparent Recombination Operators in Evolution Strategies. Evol. Comput. 5(3): 347-365 (1997) - [j4]Thomas Bäck, Ulrich Hammel, Hans-Paul Schwefel:
Evolutionary computation: comments on the history and current state. IEEE Trans. Evol. Comput. 1(1): 3-17 (1997) - [e2]Thomas Bäck:
Proceedings of the 7th International Conference on Genetic Algorithms, East Lansing, MI, USA, July 19-23, 1997. Morgan Kaufmann 1997 [contents] - 1996
- [b2]Thomas Bäck:
Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press 1996, ISBN 978-0-19-509971-3, pp. I-XII, 1-314 - [c23]Thomas Bäck, Hans-Paul Schwefel:
Evolutionary Computation: An Overview. International Conference on Evolutionary Computation 1996: 20-29 - [c22]Thomas Bäck, Jochen Heistermann, Cornelia Kappler, Michele Zamparelli:
Evolutionary Algorithms Support Refueling of Pressurized Water Reactors. International Conference on Evolutionary Computation 1996: 104-108 - [c21]Thomas Bäck, Martin Schütz:
Intelligent Mutation Rate Control in Canonical Genetic Algorithms. ISMIS 1996: 158-167 - [c20]Thomas Bäck, Holger Dörnemann, Ulrich Hammel, Pierre Frankhauser:
Modeling Urban Growth by Cellular Automata. PPSN 1996: 636-645 - [c19]Cornelia Kappler, Thomas Bäck, Jürgen Heistermann, A. Van der Velde, Michele Zamparelli:
Refueling of a Nuclear Power Plant: Comparison of a Naive and a Specialized Mutation Operator. PPSN 1996: 829-838 - [e1]Lawrence J. Fogel, Peter J. Angeline, Thomas Bäck:
Proceedings of the Fifth Annual Conference on Evolutionary Programming, EP 1996, San Diego, CA, USA, February 29 - March 2, 1996. MIT Press 1996, ISBN 0-262-06190-2 [contents] - 1995
- [c18]Thomas Bäck:
Evolution Strategies: An Alternative Evolutionary Algorithm. Artificial Evolution 1995: 3-20 - [c17]Thomas Bäck, Martin Schütz, Sami Khuri:
A Comparative Study of a Penalty Function, a Repair Heuristic and Stochastic Operators with the Set-Covering Problem. Artificial Evolution 1995: 320-332 - [c16]Thomas Bäck, Martin Schütz:
Evolution Strategies for Mixed-Integer Optimization of Optical Multilayer Systems. Evolutionary Programming 1995: 33-51 - [c15]Thomas Bäck:
Generalized Convergence Models for Tournament- and (mu, lambda)-Selection. ICGA 1995: 2-8 - 1994
- [b1]Thomas Bäck:
Evolutionary algorithms in theorie and practice. Technical University of Dortmund, Germany, 1994, pp. 1-284 - [j3]Thomas Bäck:
Book Review: Proceedings of the Fifth International Conference on Genetic Algorithms. Evol. Comput. 2(2): 181-191 (1994) - [c14]Sami Khuri, Thomas Bäck, Jörg Heitkötter:
An Evolutionary Approach to Combinatorial Optimization Problems. ACM Conference on Computer Science 1994: 66-73 - [c13]Thomas Bäck:
Order Statistics for Convergence Velocity Analysis of Simplified Evolutionary Algorithms. FOGA 1994: 91-102 - [c12]Thomas Bäck, Ulrich Hammel:
Evolution Strategies Applied to Perturbed Objective Functions. International Conference on Evolutionary Computation 1994: 40-45 - [c11]Thomas Bäck:
Selective Pressure in Evolutionary Algorithms: A Characterization of Selection Mechanisms. International Conference on Evolutionary Computation 1994: 57-62 - [c10]Thomas Bäck, Sami Khuri:
An Evolutionary Heuristic for the Maximum Independent Set Problem. International Conference on Evolutionary Computation 1994: 531-535 - [c9]Ulrich Hammel, Thomas Bäck:
Evolution Strategies on Noisy Functions: How to Improve Convergence Properties. PPSN 1994: 159-168 - [c8]Thomas Bäck:
Parallel Optimization of Evolutionary Algorithms. PPSN 1994: 418-427 - [c7]Sami Khuri, Thomas Bäck, Jörg Heitkötter:
The zero/one multiple knapsack problem and genetic algorithms. SAC 1994: 188-193 - 1993
- [j2]Thomas Bäck, Hans-Paul Schwefel:
An Overview of Evolutionary Algorithms for Parameter Optimization. Evol. Comput. 1(1): 1-23 (1993) - [c6]William M. Spears, Kenneth A. De Jong, Thomas Bäck, David B. Fogel, Hugo de Garis:
An Overview of Evolutionary Computation. ECML 1993: 442-459 - [c5]Thomas Bäck:
Optimal Mutation Rates in Genetic Search. ICGA 1993: 2-8 - 1992
- [j1]Hans-Paul Schwefel, Thomas Bäck:
Künstliche Evolution - eine intelligente Problemlösungsstrategie? Künstliche Intell. 6(2): 20-27 (1992) - [c4]Thomas Bäck:
The Interaction of Mutation Rate, Selection, and Self-Adaptation Within a Genetic Algorithm. PPSN 1992: 87-96 - 1991
- [c3]Thomas Bäck, Frank Hoffmeister, Hans-Paul Schwefel:
A Survey of Evolution Strategies. ICGA 1991: 2-9 - [c2]Thomas Bäck, Frank Hoffmeister:
Extended Selection Mechanisms in Genetic Algorithms. ICGA 1991: 92-99 - 1990
- [c1]Frank Hoffmeister, Thomas Bäck:
Genetic Algorithms and Evolution Strategies - Similarities and Differences. PPSN 1990: 455-469
Coauthor Index
aka: Roman T. Kalkreuth
aka: Bas van Stein
aka: Diederick L. Vermetten
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-21 00:13 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint