Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Animating deformable objects using sparse spacetime constraints

Published: 27 July 2014 Publication History

Abstract

We propose a scheme for animating deformable objects based on spacetime optimization. The main feature is that it robustly and within a few seconds generates interesting motion from a sparse set of spacetime constraints. Providing only partial (as opposed to full) keyframes for positions and velocities is sufficient. The computed motion satisfies the constraints and the remaining degrees of freedom are determined by physical principles using elasticity and the spacetime constraints paradigm. Our modeling of the spacetime optimization problem combines dimensional reduction, modal coordinates, wiggly splines, and rotation strain warping. Our solver is based on a theorem that characterizes the solutions of the optimization problem and allows us to restrict the optimization to low-dimensional search spaces. This treatment of the optimization problem avoids a time discretization and the resulting method can robustly deal with sparse input and wiggly motion.

Supplementary Material

ZIP File (a109-schulz.zip)
Supplemental material.
MP4 File (a109-sidebyside.mp4)

References

[1]
An, S. S., Kim, T., and James, D. L. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Trans. Graph. 27, 5, 165:1--165:10.
[2]
Barbič, J., and James, D. L. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 3, 982--990.
[3]
Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. ACM Trans. Graph. 28, 53:1--53:9.
[4]
Barbič, J., Sin, F., and Grinspun, E. 2012. Interactive editing of deformable simulations. ACM Trans. Graph. 31, 4.
[5]
Bergou, M., Mathur, S., Wardetzky, M., and Grinspun, E. 2007. TRACKS: Toward Directable Thin Shells. ACM Trans. Graph. 26, 3, 50:1--50:10.
[6]
Choi, M. G., and Ko, H.-S. 2005. Modal warping: Real-time simulation of large rotational deformation and manipulation. IEEE Trans. Vis. Comput. Graphics 11, 1, 91--101.
[7]
Cohen, M. F. 1992. Interactive spacetime control for animation. Proc of ACM SIGGRAPH 26, 293--302.
[8]
Coros, S., Martin, S., Thomaszewski, B., Schumacher, C., Sumner, R., and Gross, M. 2012. Deformable objects alive! ACM Trans. Graph. 31, 4, 69:1--69:9.
[9]
Fang, A. C., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Trans. Graph. 22, 3, 417--426.
[10]
Gleicher, M. 1997. Motion editing with spacetime constraints. In Proc. of Symp. on Interactive 3D Graphics, 139--148.
[11]
Heeren, B., Rumpf, M., Wardetzky, M., and Wirth, B. 2012. Time-discrete geodesics in the space of shells. Comp. Graph. Forum 31, 5, 1755--1764.
[12]
Hildebrandt, K., Schulz, C., von Tycowicz, C., and Polthier, K. 2012. Interactive spacetime control of deformable objects. ACM Trans. Graph. 31, 4, 71:1--71:8.
[13]
Huang, J., Tong, Y., Zhou, K., Bao, H., and Desbrun, M. 2011. Interactive shape interpolation through controllable dynamic deformation. IEEE Transactions on Visualization and Computer Graphics 17, 7, 983--992.
[14]
Kass, M., and Anderson, J. 2008. Animating oscillatory motion with overlap: wiggly splines. ACM Trans. Graph. 27, 3, 28:1--28:8.
[15]
Kilian, M., Mitra, N. J., and Pottmann, H. 2007. Geometric modeling in shape space. ACM Trans. Graph. 26, 3, 64:1--64:10.
[16]
Kim, T., and James, D. L. 2009. Skipping steps in deformable simulation with online model reduction. ACM Trans. Graph. 28, 5, 123:1--123:9.
[17]
Kim, J., and Pollard, N. S. 2011. Fast simulation of skeleton-driven deformable body characters. ACM Trans. Graph. 30, 5, 121:1--121:19.
[18]
Kondo, R., Kanai, T., and Anjyo, K.-i. 2005. Directable animation of elastic objects. In Symp. Comp. Anim., 127--134.
[19]
Krysl, P., Lall, S., and Marsden, J. E. 2001. Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int. J. Numer. Meth. Eng. 51, 479--504.
[20]
Li, S., Huang, J., Desbrun, M., and Jin, X. 2013. Interactive elastic motion editing through spacetime position constraints. Computer Animation and Virtual Worlds 24, 3--4, 409--417.
[21]
Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. 2011. Example-based elastic materials. ACM Trans. Graph. 30, 4, 72:1--72:8.
[22]
McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Trans. Graph. 23, 3, 449--456.
[23]
Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In Proc. Symp. Comp. Anim., 49--54.
[24]
Nickell, R. 1976. Nonlinear dynamics by mode superposition. Comput. Meth. Appl. Mech. Eng. 7, 1, 107--129.
[25]
Pentland, A., and Williams, J. 1989. Good vibrations: modal dynamics for graphics and animation. Proc. of ACM SIGGRAPH 23, 207--214.
[26]
Popović, J., Seitz, S. M., and Erdmann, M. 2003. Motion sketching for control of rigid-body simulations. ACM Trans. Graph. 22, 4, 1034--1054.
[27]
Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23, 3, 514--521.
[28]
Schulz, C., von Tycowicz, C., Seidel, H.-P., and Hildebrandt, K., 2014. Proofs of two theorems concerning sparse spacetime constraints. http://arxiv.org/abs/1405.1902.
[29]
Si, H., and Gärtner, K. 2005. Meshing piecewise linear complexes by constrained Delaunay tetrahedralizations. In Proceedings of the 14th International Meshing Roundtable. Springer, 147--163.
[30]
Sifakis, E., and Barbič, J. 2012. FEM simulation of 3D deformable solids: A practitioner's guide to theory, discretization and model reduction. In SIGGRAPH Courses, 20:1--20:50.
[31]
Sulejmanpašić, A., and Popović, J. 2005. Adaptation of performed ballistic motion. ACM Trans. Graph. 24, 1, 165--179.
[32]
Sumner, R. W., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. ACM Trans. Graph. 24, 3, 488--495.
[33]
Tan, J., Turk, G., and Liu, C. K. 2012. Soft body locomotion. ACM Trans. Graph. 31, 4, 26:1--26:11.
[34]
Treuille, A., McNamara, A., Popović, Z., and Stam, J. 2003. Keyframe control of smoke simulations. ACM Trans. Graph. 22, 3, 716--723.
[35]
Valette, S., and Chassery, J.-M. 2004. Approximated centroidal Voronoi diagrams for uniform polygonal mesh coarsening. Computer Graphics Forum 23, 3, 381--389.
[36]
von Tycowicz, C., Schulz, C., Seidel, H.-P., and Hildebrandt, K. 2013. An efficient construction of reduced deformable objects. ACM Trans. Graph. 32, 6, 213:1--213:10.
[37]
Wisniewski, K. 2010. Finite Rotation Shells. Springer.
[38]
Witkin, A., and Kass, M. 1988. Spacetime constraints. Proc. of ACM SIGGRAPH 22, 159--168.
[39]
Wojtan, C., Mucha, P. J., and Turk, G. 2006. Keyframe control of complex particle systems using the adjoint method. In Proc. Symp. Comp. Anim., 15--23.
[40]
Xu, D., Zhang, H., Wang, Q., and Bao, H. 2005. Poisson shape interpolation. In Symp. Solid and Phys. Model., 267--274.

Cited By

View all
  • (2024)Computational Biomimetics of Winged SeedsACM Transactions on Graphics10.1145/368789943:6(1-13)Online publication date: 19-Dec-2024
  • (2024)SceneExpander: Real-Time Scene Synthesis for Interactive Floor Plan EditingProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3680798(6232-6240)Online publication date: 28-Oct-2024
  • (2024)PlanNet: A Generative Model for Component-Based Plan SynthesisIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.327520030:8(4739-4751)Online publication date: 1-Aug-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 33, Issue 4
July 2014
1366 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2601097
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2014
Published in TOG Volume 33, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. model reduction
  2. optimal control
  3. physically-based animation
  4. spacetime constraints
  5. wiggly splines

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)17
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Computational Biomimetics of Winged SeedsACM Transactions on Graphics10.1145/368789943:6(1-13)Online publication date: 19-Dec-2024
  • (2024)SceneExpander: Real-Time Scene Synthesis for Interactive Floor Plan EditingProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3680798(6232-6240)Online publication date: 28-Oct-2024
  • (2024)PlanNet: A Generative Model for Component-Based Plan SynthesisIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.327520030:8(4739-4751)Online publication date: 1-Aug-2024
  • (2024)Magic Furniture: Design Paradigm of Multi-Function AssemblyIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.325048830:7(4068-4079)Online publication date: 1-Jul-2024
  • (2024)A Sampling Ensemble for Asymptotically Complete Motion Planning with Volume-Reducing Workspace Constraints2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)10.1109/IROS58592.2024.10801445(11070-11077)Online publication date: 14-Oct-2024
  • (2024)Generative shape deformation with optimal transport using learned transformations2024 International Joint Conference on Neural Networks (IJCNN)10.1109/IJCNN60899.2024.10651223(1-8)Online publication date: 30-Jun-2024
  • (2024)De Casteljau's algorithm in geometric data analysisComputer Aided Geometric Design10.1016/j.cagd.2024.102288110:COnline publication date: 1-May-2024
  • (2024)ComboVerse: Compositional 3D Assets Creation Using Spatially-Aware Diffusion GuidanceComputer Vision – ECCV 202410.1007/978-3-031-72691-0_8(128-146)Online publication date: 29-Sep-2024
  • (2023)Physical Cyclic AnimationsProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069386:3(1-18)Online publication date: 24-Aug-2023
  • (2022)Learning Virtual Chimeras by Dynamic Motion ReassemblyACM Transactions on Graphics10.1145/3550454.355548941:6(1-13)Online publication date: 30-Nov-2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media