Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Space-time editing of elastic motion through material optimization and reduction

Published: 27 July 2014 Publication History

Abstract

We present a novel method for elastic animation editing with space-time constraints. In a sharp departure from previous approaches, we not only optimize control forces added to a linearized dynamic model, but also optimize material properties to better match user constraints and provide plausible and consistent motion. Our approach achieves efficiency and scalability by performing all computations in a reduced rotation-strain (RS) space constructed with both cubature and geometric reduction, leading to two orders of magnitude improvement over the original RS method. We demonstrate the utility and versatility of our method in various applications, including motion editing, pose interpolation, and estimation of material parameters from existing animation sequences.

Supplementary Material

ZIP File (a108-li.zip)
Supplemental material.
MP4 File (a108-sidebyside.mp4)

References

[1]
An, S. S., Kim, T., and James, D. L. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Transactions on Graphics 27, 5, 165:1--165:10.
[2]
Barbič, J., and James, D. L. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Transactions on Graphics 24, 3, 982--990.
[3]
Barbič, J., and Popović, J. 2008. Real-time control of physically based simulations using gentle forces. ACM Transactions Graphics 27, 5, 163:1--163:10.
[4]
Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. ACM Transactions on Graphics 28, 3, 53:1--53:9.
[5]
Barbič, J., Sin, F., and Grinspun, E. 2012. Interactive editing of deformable simulations. ACM Transactions on Graphics 31, 4, 70:1--70:8.
[6]
Bickel, B., Bächer, M., Otaduy, M. A., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM Transactions on Graphics 28, 3, 89:1--89:9.
[7]
Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Transactions on Graphics 29, 4, 63:1--63:10.
[8]
Bochkanov, S. Alglib (www.alglib.net).
[9]
Byrd, R. H., Lu, P., and Nocedal, J. 1995. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 5, 1190--1208.
[10]
Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S. 2008. Algorithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35, 3, 22:1--22:14.
[11]
Choi, M. G., and Ko, H.-S. 2005. Modal warping: Real-time simulation of large rotational deformation and manipulation. IEEE Transactions on Visualization and Computer Graphics 11, 1, 91--101.
[12]
Coros, S., Martin, S., Thomaszewski, B., Schumacher, C., Sumner, R., and Gross, M. 2012. Deformable objects alive! ACM Transactions on Graphics 31, 4 (July), 69:1--69:9.
[13]
Fang, A. C., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Transactions on Graphics 22, 3, 417--426.
[14]
Gleicher, M. 1997. Motion editing with spacetime constraints. In Symposium on Interactive 3D graphics, 139--149.
[15]
Grassia, F. S. 1998. Practical parameterization of rotations using the exponential map. J. Graph. Tools 3, 3 (Mar.), 29--48.
[16]
Hauser, K. K., Shen, C., and OBrien, J. F. 2003. Interactive deformation using modal analysis with constraints. In Proceedings of Graphics Interface, vol. 3, 16--17.
[17]
Hildebrandt, K., Schulz, C., von Tycowicz, C., and Polthier, K. 2012. Interactive spacetime control of deformable objects. ACM Transactions on Graphics 31, 4, 71:1--71:8.
[18]
Huang, J., Tong, Y., Zhou, K., Bao, H., and Desbrun, M. 2011. Interactive shape interpolation through controllable dynamic deformation. IEEE Transactions on Visualization and Computer Graphics 17, 7, 983--992.
[19]
Jeon, H., and Choi, M.-H. 2007. Interactive motion control of deformable objects using localized optimal control. In Proceedings of ICRA, 2582--2587.
[20]
Kim, Y., Machiraju, R., and Thompson, D. 2006. Path-based control of smoke simulations. In Symposium on Computer Animation, 33--42.
[21]
Li, S., Huang, J., Desbrun, M., and Jin, X. 2013. Interactive elastic motion editing through spacetime position constraints. Computer Animation and Virtual Worlds 24, 3--4, 409--417.
[22]
Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. 2011. Example-based elastic materials. ACM Transactions on Graphics 30, 4, 72:1--72:8.
[23]
Nielsen, M. B., and Bridson, R. 2011. Guide shapes for high resolution naturalistic liquid simulation. ACM Transactions on Graphics 30, 4, 83:1--83:8.
[24]
Pentland, A., and Williams, J. 1989. Good vibrations: modal dynamics for graphics and animation. Proceedings of ACM SIGGRAPH 23, 3, 207--214.
[25]
Popovic, J., Seitz, S., Erdmann, M., Popovic, Z., and Witkin, A. 2000. Interactive manipulation of rigid body simulations. In Proceedings of ACM SIGGRAPH, 209--218.
[26]
Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. In Proceedings of ACM SIGGRAPH, 514--521.
[27]
Stanton, M., Sheng, Y., Wicke, M., Perazzi, F., Yuen, A., Narasimhan, S., and Treuille, A. 2013. Non-polynomial galerkin projection on deforming meshes. ACM Transactions on Graphics 32, 4, 86:1--86:14.
[28]
Treuille, A., McNamara, A., Popović, Z., and Stam, J. 2003. Keyframe control of smoke simulations. In Proceedings of ACM SIGGRAPH, 716--723.
[29]
Twigg, C. D., and James, D. L. 2007. Many-worlds browsing for control of multibody dynamics. ACM Transactions on Graphics 26, 3, 14.
[30]
von Tycowicz, C., Schulz, C., Seidel, H.-P., and Hildebrandt, K. 2013. An efficient construction of reduced deformable objects. ACM Transactions on Graphics 32, 6, 213:1--213:10.
[31]
Witkin, A., and Kass, M. 1988. Spacetime constraints. In Proceedings of ACM SIGGRAPH, 159--168.

Cited By

View all

Index Terms

  1. Space-time editing of elastic motion through material optimization and reduction

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 33, Issue 4
    July 2014
    1366 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2601097
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 27 July 2014
    Published in TOG Volume 33, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. elastic animation
    2. model reduction
    3. motion editing
    4. space and time constraints

    Qualifiers

    • Research-article

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)17
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Progressive Dynamics for Cloth and Shell AnimationACM Transactions on Graphics10.1145/365821443:4(1-18)Online publication date: 19-Jul-2024
    • (2024)Editing mesh sequences with varying connectivityComputers & Graphics10.1016/j.cag.2024.103943121(103943)Online publication date: Jun-2024
    • (2024)Optimizing heterogeneous elastic material distributions on 3D modelsComputer-Aided Design10.1016/j.cad.2024.103748175:COnline publication date: 1-Oct-2024
    • (2023)Physical Cyclic AnimationsProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069386:3(1-18)Online publication date: 24-Aug-2023
    • (2022)Simulation and optimization of magnetoelastic thin shellsACM Transactions on Graphics10.1145/3528223.353014241:4(1-18)Online publication date: 22-Jul-2022
    • (2021)Symmetry Based Material OptimizationSymmetry10.3390/sym1302031513:2(315)Online publication date: 14-Feb-2021
    • (2021)Computational Design of Skinned Quad-RobotsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2019.295721827:6(2881-2895)Online publication date: 1-Jun-2021
    • (2020)ConJac: Large Steps in Dynamic SimulationProceedings of the 13th ACM SIGGRAPH Conference on Motion, Interaction and Games10.1145/3424636.3426901(1-8)Online publication date: 16-Oct-2020
    • (2020)Complementary dynamicsACM Transactions on Graphics10.1145/3414685.341781939:6(1-11)Online publication date: 27-Nov-2020
    • (2019)Material-adapted refinable basis functions for elasticity simulationACM Transactions on Graphics10.1145/3355089.335656738:6(1-15)Online publication date: 8-Nov-2019
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media