Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Phasor Imaging: A Generalization of Correlation-Based Time-of-Flight Imaging

Published: 03 November 2015 Publication History

Abstract

In correlation-based time-of-flight (C-ToF) imaging systems, light sources with temporally varying intensities illuminate the scene. Due to global illumination, the temporally varying radiance received at the sensor is a combination of light received along multiple paths. Recovering scene properties (e.g., scene depths) from the received radiance requires separating these contributions, which is challenging due to the complexity of global illumination and the additional temporal dimension of the radiance.
We propose phasor imaging, a framework for performing fast inverse light transport analysis using C-ToF sensors. Phasor imaging is based on the idea that, by representing light transport quantities as phasors and light transport events as phasor transformations, light transport analysis can be simplified in the temporal frequency domain. We study the effect of temporal illumination frequencies on light transport and show that, for a broad range of scenes, global radiance (inter-reflections and volumetric scattering) vanishes for frequencies higher than a scene-dependent threshold. We use this observation for developing two novel scene recovery techniques. First, we present micro-ToF imaging, a ToF-based shape recovery technique that is robust to errors due to inter-reflections (multipath interference) and volumetric scattering. Second, we present a technique for separating the direct and global components of radiance. Both techniques require capturing as few as 3--4 images and minimal computations. We demonstrate the validity of the presented techniques via simulations and experiments performed with our hardware prototype.

Supplementary Material

a156-gupta-app.pdf (gupta.zip)
Supplemental movie, appendix, image and software files for, Phasor Imaging: A Generalization of Correlation-Based Time-of-Flight Imaging
MP4 File (a156.mp4)

References

[1]
X. Ai, R. Nock, J. G. Rarity, and N. Dahnoun. 2011. High-resolution random-modulation CW lidar. Appl. Optics 50, 22.
[2]
M. Akbulut, C. H. Chen, M. C. Hargis, A. M. Weiner, M. R. Mel-Loch, and J. M. Woodall. 2001. Digital communications above 1 Gb/s using 890-nm surface-emitting light-emitting diodes. IEEE Photon. Technol. Lett. 13, 1.
[3]
J. Busck and H. Heiselberg. 2004. High accuracy 3D laser radar. Proc. SPIE 5412.
[4]
B. Buttgen, M.-A. El Mechat, F. Lustenberger, and P. Seitz. 2007. Pseudonoise optical modulation for real-time 3-d imaging with minimum interference. IEEE Trans. Circ. Syst. 54, 10, 2109--2119.
[5]
B. Buxbaum, R. Schwarte, T. Ringbeck, M. Grothof, and X. Luan. 2002. Msm-pmd as correlation receiver in a new 3d-ranging system. Proc. SPIE 4546.
[6]
D. A. Carnegie, J. R. K. McClymont, A. P. P. Jongenelen, B. Drayto, A. A. Dorrington, and A. D. Payne. 2011. Design and construction of a configurable full-field range imaging system for mobile robotic applications. In New Developments and Applications in Sensing Technology. Springer, 133--155.
[7]
C. H. Chen, M. Hargis, J. M. Woodall, M. R. Melloch, J. S. Reynolds, E. Yablonovitch, and W. Wang. 1999. Ghz bandwidth gaas light-emitting diodes. Appl. Phys. Lett. 74, 21.
[8]
T. Chen, H. P. Seidel, and H. Lensch. 2008. Modulated phase-shifting for 3D scanning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'08). 1--8.
[9]
V. Couture, N. Martin, and S. Roy. 2014. Unstructured light scanning robust to indirect illumination and depth discontinuities. Int. J. Comput. Vis. 108, 3, 204--221.
[10]
A. A. Dorrington, J. P. Godbaz, M. J. Cree, A. D. Payne, and L. V. Streeter. 2011. Separating true range measurements from multi-path and scattering interference in commercial range cameras. Proc. SPIE 7864.
[11]
R. Ferriere, J. Cussey, and J. Dudley. 2008. Time-of-flight range detection using low-frequency intensity modulation of a CW laser diode: Application to fiber length measurement. Optical Engin. 47, 9.
[12]
D. Freedman, E. Krupka, Y. Smolin, I. Leichter, and M. Schmidt. 2014. SRA: Fast removal of general multipath for ToF sensors. In Proceedings of the 13th European Conference on Computer Vision (ECCV'14). 234--249.
[13]
S. Fuchs. 2010. Multipath interference compensation in time-of-flight camera images. In Proceedings of the 20th International Conference on Pattern Recognition (ICPR'10). 3583--3586.
[14]
S. Fuchs, M. Suppa, and O. Hellwich. 2013. Compensation for multipath in Tof camera measurements supported by photometric calibration and environment integration. In Proceedings of the 9th International Conference on Computer Vision Systems (ICVS'13). 31--41.
[15]
J. Godbaz, M. Cree, and A. Dorrington. 2008. Mixed pixel return separation for a full-field ranger. In Proceedings of the 23rd International Conference on Image and Vision Computing New Zealand (IVCNZ'08). 1--6.
[16]
J. P. Godbaz, M. J. Cree, and A. A. Dorrington. 2009. Multiple return separation for a full-field ranger via continuous waveform modelling. Proc. SPIE 7251.
[17]
J. P. Godbaz, M. J. Cree, and A. A. Dorrington. 2012. Closed-form inverses for the mixed pixel/multipath interference problem in AMCW lidar. Proc. SPIE 8296.
[18]
S. B. Gokturk, H. Yalcin, and C. Bamji. 2004. A time-of-flight depth sensor - System description, issues and solutions. In Proceedings of the Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'04). 35.
[19]
J. Gu, T. Kobayashi, M. Gupta, and S. Nayar. 2011. Multiplexed illumination for scene recovery in the presence of global illumination. In Proceedings of the IEEE International Conference on Computer Vision (ICCV'11). 691--698.
[20]
M. Gupta, A. Agrawal, A. Veeraraghavan, and S. G. Narasimhan. 2013a. A practical approach to 3d scanning in the presence of interreflections, subsurface scattering and defocus. Int. J. Comput. Vis. 102, 1--3, 33--55.
[21]
M. Gupta, Q. Yin, and S. K. Nayar. 2013b. Structured light in sunlight. In Proceedings of the IEEE International Conference on Computer Vision (ICCV'13). 545--552.
[22]
M. Gupta and S. K. Nayar. 2012. Micro phase shifting. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'12). 813--820.
[23]
M. Gupta, Y. Tian, S. G. Narasimhan, and L. Zhang. 2009. (De)focusing on global light transport for active scene recovery. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'09). 2969--2976.
[24]
V. I. Gushov and Y. N. Solodkin. 1991. Automatic processing of fringe patterns in integer interferometers. Optics Lasers Engin. 14, 4--5.
[25]
S. W. Hasinoff, F. Durand, and W. T. Freeman. 2010. Noise-optimal capture for high dynamic range photography. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'10). 553--560.
[26]
F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich. 2013. Low-budget transient imaging using photonic mixer devices. ACM Trans. Graph. 32, 4.
[27]
J. Heinen, W. Huber, and W. Harth. 1976. Light-emitting diodes with a modulation bandwidth of more than 1 Ghz. Electron. Lett. 12, 21.
[28]
L. G. Henyey and J. L. Greenstein. 1941. Diffuse radiation in the galaxy. Astrophys. J. 93, 70--83.
[29]
D. Jimenez, D. Pizarro, M. Mazo, and S. Palazuelos. 2012. Modelling and correction of multipath interference in time of flight cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'12). 893--900.
[30]
A. P. P. Jongenelen, D. G. Bailey, A. D. Payne, A. A. Dorrington, and D. A. Carnegie. 2011. Analysis of errors in tof range imaging with dual-frequency modulation. IEEE Trans. Instrument. Measure. 60, 5.
[31]
A. P. P. Jongenelen, D. Carnegie, A. D. Payne, and A. A. Dorrington. 2010. Maximizing precision over extended unambiguous range for Tof range imaging systems. In Proceedings of the IEEE Instrumentation and Measurement Technology Conference (I2MTC'10). 1575--1580.
[32]
A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar. 2013. Coded time of flight cameras: Sparse deconvolution to address multipath interference and recover time profiles. ACM Trans. Graph. 32, 6.
[33]
A. Kirmani, A. Benedetti, and P. Chou. 2013. SPUMIC: Simultaneous phase unwrapping and multipath interference cancellation in time-of-flight cameras using spectral methods. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME'13). 1--6.
[34]
A. Kirmani, T. Hutchison, J. Davis, and R. Raskar. 2009. Looking around the corner using transient imaging. In Proceedings of the IEEE International Conference on Computer Vision (ICCV'09). 159--166.
[35]
W. Koechner. 1968. Optical ranging system employing a high power injection laser diode. IEEE Trans. Aerospace Electron. Syst. 4, 1.
[36]
R. Lange. 2000. 3d time-of-flight distance measurement with custom solid-state image sensors in cmos-ccd-technology. PhD thesis. http://d-nb.info/960293825/34.
[37]
R. Lange and P. Seitz. 2001. Solid state time-of-flight range camera. IEEE J. Quantum Electron. 37, 3.
[38]
N. Naik, S. Zhao, A. Velten, R. Raskar, and K. Bala. 2011. Single view reflectance capture using multiplexed scattering and time-of-flight imaging. ACM Trans. Graph. 30, 6.
[39]
S. G. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. K. Nayar, and H. W. Jensen. 2006. Acquiring scattering properties of participating media by dilution. ACM Trans. Graph. 25, 3, 1003--1012.
[40]
S. K. Nayar, G. Krishnan, M. D. Grossberg, and R. Raskar. 2006. Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. Graph. 25, 3, 935--944.
[41]
M. O'Toole, F. Heide, L. Xiao, M. B. Hullin, W. Heidrich, and K. N.Kutulakos. 2014. Temporal frequency probing for 5D transient analysis of global light transport. ACM Trans. Graph. 33, 4.
[42]
M. O'Toole, R. Raskar, and K. N. Kutulakos. 2012. Primal-dual coding to probe light transport. ACM Trans. Graph. 31, 4.
[43]
R. Pandharkar, A. Velten, A. Bardagjy, E. Lawson, M. Bawendi, and R. Raskar. 2011. Estimating motion and size of moving non-line-of-sight objects in cluttered environments. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'11).265--272.
[44]
A. D. Payne, A. A. Dorrington, and M. J. Cree. 2010a. Illumination waveform optimization for time-of-flight range imaging cameras. Proc. SPIE 8085.
[45]
A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie. 2010b. Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras. Appl. Optics 49, 23.
[46]
D. Reddy, R. Ramamoorthi, and B. Curless. 2012. Frequency-space decomposition and acquisition of light transport under spatially varying illumination. In Proceedings of the 12th European Conference on Computer Vision (ECCV'12). 596--610.
[47]
R. Schwarte. 2004. Breakthrough in multi-channel laser-radar technology providing thousands of high-sensitive lidar receivers on a chip. Proc. SPIE 5575.
[48]
R. Schwarte, Z. Xu, H. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte. 1997. New electro-optical mixing and correlating sensor: Facilities and applications of the photonic mixer device. Proc. SPIE 3100.
[49]
S. M. Seitz, Y. Matsushita, and K. N. Kutulakos. 2005. A theory of inverse light transport. In Proceedings of the 10th IEEE International Conference on Computer Vision (ICCV'05). 1440--1447.
[50]
M. Takeda, Q. Gu, M. Kinoshita, H. Takai, and Y. Takahashi. 1997. Frequency-multiplex fourier-transform profilometry: A single-shot three-dimensional shape measurement of objects with large height discontinuities and/or surface isolations. Appl. Optics 36, 22.
[51]
A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar. 2012. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nature 3, 745.
[52]
A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez, and R. Raskar. 2013. Femto-photography: Capturing and visualizing the propagation of light. ACM Trans. Graph. 32, 4.
[53]
G. Walter, C. Wu, H. Then, M. Feng, and N. Holonyak. 2009. Tilted-charge high speed (7 Ghz) light emitting diode. Appl. Phys. Lett. 94, 23.
[54]
C. H. Wu, G. Walter, H. Then, and M. Feng. 2010. Design and layout of multi Ghz operation of light emitting diodes. In Proceedings of the GaAs MAN-TECH Conference.
[55]
D. Wu, M. O'Toole, A. Velten, A. Agrawal, and R. Raskar. 2012a. Decomposing global light transport using time of flight imaging. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'12). 366--373.
[56]
D. Wu, G. Wetzstein, C. Barsi, T. Willwacher, M. O'Toole, N. Naik, Q. Dai, K. Kutulakos, and R. Raskar. 2012b. Frequency analysis of transient light transport with applications in bare sensor imaging. In Proceedings of the 12th European Conference on Computer Vision (ECCV'12).542--555.

Cited By

View all
  • (2024)Neural single-shot GHz FMCW correlation imagingOptics Express10.1364/OE.51903132:16(27835)Online publication date: 18-Jul-2024
  • (2024)Confocal Bistatic LIDAR in scattering mediaOcean Sensing and Monitoring XVI10.1117/12.3014721(8)Online publication date: 6-Jun-2024
  • (2024)BimodalPS: Causes and Corrections for Bimodal Multi-Path in Phase-Shifting Structured Light ScannersIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2022.320626546:6(4001-4017)Online publication date: Jun-2024
  • Show More Cited By

Index Terms

  1. Phasor Imaging: A Generalization of Correlation-Based Time-of-Flight Imaging

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 34, Issue 5
      October 2015
      188 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2843519
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 03 November 2015
      Accepted: 01 February 2015
      Revised: 01 December 2014
      Received: 01 June 2014
      Published in TOG Volume 34, Issue 5

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. 3D cameras
      2. Computational photography
      3. global illumination inter-reflections
      4. light transport
      5. multipath interference
      6. time-of-flight depth cameras
      7. transient imaging
      8. volumetric scattering

      Qualifiers

      • Research-article
      • Research
      • Refereed

      Funding Sources

      • NSF

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)135
      • Downloads (Last 6 weeks)10
      Reflects downloads up to 20 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Neural single-shot GHz FMCW correlation imagingOptics Express10.1364/OE.51903132:16(27835)Online publication date: 18-Jul-2024
      • (2024)Confocal Bistatic LIDAR in scattering mediaOcean Sensing and Monitoring XVI10.1117/12.3014721(8)Online publication date: 6-Jun-2024
      • (2024)BimodalPS: Causes and Corrections for Bimodal Multi-Path in Phase-Shifting Structured Light ScannersIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2022.320626546:6(4001-4017)Online publication date: Jun-2024
      • (2024)Recurrent Cross-Modality Fusion for Time-of-Flight Depth DenoisingIEEE Transactions on Computational Imaging10.1109/TCI.2024.349631210(1626-1639)Online publication date: 2024
      • (2024)Differentiable Deflectometric Eye TrackingIEEE Transactions on Computational Imaging10.1109/TCI.2024.338249410(888-898)Online publication date: 2024
      • (2024)Simultaneous Multifrequency Demodulation for Single-Shot Multiple-Path ToF ImagingIEEE Transactions on Computational Imaging10.1109/TCI.2023.334875810(54-68)Online publication date: 2024
      • (2024)Multi-Path Interference Mitigation For Indirect Time-of-Flight Camera By the Distortion of Coding Curve2024 IEEE International Conference on Image Processing (ICIP)10.1109/ICIP51287.2024.10648103(2779-2785)Online publication date: 27-Oct-2024
      • (2024)Coherence, Distance and Error: Understanding Coded Demodulation in PB-ToF Imaging2024 International Workshop on the Theory of Computational Sensing and its Applications to Radar, Multimodal Sensing and Imaging (CoSeRa)10.1109/CoSeRa60846.2024.10720373(112-116)Online publication date: 18-Sep-2024
      • (2024)Snapshot Lidar: Fourier Embedding of Amplitude and Phase for Single-Image Depth Reconstruction2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.02381(25203-25212)Online publication date: 16-Jun-2024
      • (2024)EvDiG: Event-guided Direct and Global Components Separation2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00918(9612-9621)Online publication date: 16-Jun-2024
      • Show More Cited By

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media