Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3503222.3507715acmconferencesArticle/Chapter ViewAbstractPublication PagesasplosConference Proceedingsconference-collections
research-article
Open access

Paulihedral: a generalized block-wise compiler optimization framework for Quantum simulation kernels

Published: 22 February 2022 Publication History

Abstract

The quantum simulation kernel is an important subroutine appearing as a very long gate sequence in many quantum programs. In this paper, we propose Paulihedral, a block-wise compiler framework that can deeply optimize this subroutine by exploiting high-level program structure and optimization opportunities. Paulihedral first employs a new Pauli intermediate representation that can maintain the high-level semantics and constraints in quantum simulation kernels. This naturally enables new large-scale optimizations that are hard to implement at the low gate-level. In particular, we propose two technology-independent instruction scheduling passes, and two technology-dependent code optimization passes which reconcile the circuit synthesis, gate cancellation, and qubit mapping stages of the compiler. Experimental results show that Paulihedral can outperform state-of-the-art compiler infrastructures in a wide-range of applications on both near-term superconducting quantum processors and future fault-tolerant quantum computers.

References

[1]
Daniel S. Abrams and Seth Lloyd. 1999. Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors. Phys. Rev. Lett., 83 (1999), Dec, 5162–5165. https://doi.org/10.1103/PhysRevLett.83.5162
[2]
Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. 2020. Circuit Compilation Methodologies for Quantum Approximate Optimization Algorithm. In 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 215–228. https://doi.org/10.1109/MICRO50266.2020.00029
[3]
Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. 2020. An efficient circuit compilation flow for quantum approximate optimization algorithm. In 2020 57th ACM/IEEE Design Automation Conference (DAC). 1–6. https://doi.org/10.1109/DAC18072.2020.9218558
[4]
Mahabubul Alam, Abdullah Ash-Saki, Junde Li, Anupam Chattopadhyay, and Swaroop Ghosh. 2020. Noise resilient compilation policies for quantum approximate optimization algorithm. In Proceedings of the 39th International Conference on Computer-Aided Design. 1–7. https://doi.org/10.1145/3400302.3415745
[5]
Matthew Amy and Vlad Gheorghiu. 2020. staq— A full-stack quantum processing toolkit. Quantum Science and Technology, 5, 3 (2020), jun, 034016. https://doi.org/10.1088/2058-9565/ab9359
[6]
J. M. Arrazola, V. Bergholm, K. Brádler, T. R. Bromley, M. J. Collins, I. Dhand, A. Fumagalli, T. Gerrits, A. Goussev, L. G. Helt, J. Hundal, T. Isacsson, R. B. Israel, J. Izaac, S. Jahangiri, R. Janik, N. Killoran, S. P. Kumar, J. Lavoie, A. E. Lita, D. H. Mahler, M. Menotti, B. Morrison, S. W. Nam, L. Neuhaus, H. Y. Qi, N. Quesada, A. Repingon, K. K. Sabapathy, M. Schuld, D. Su, J. Swinarton, A. Száva, K. Tan, P. Tan, V. D. Vaidya, Z. Vernon, Z. Zabaneh, and Y. Zhang. 2021. Quantum circuits with many photons on a programmable nanophotonic chip. Nature, 591, 7848 (2021), 01 Mar, 54–60. issn:1476-4687 https://doi.org/10.1038/s41586-021-03202-1
[7]
G. Brassard and P. Hoyer. 1997. An exact quantum polynomial-time algorithm for Simon’s problem. In Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems. 12–23. https://doi.org/10.1109/ISTCS.1997.595153
[8]
Sergey B. Bravyi and Alexei Yu. Kitaev. 2002. Fermionic Quantum Computation. Annals of Physics, 298, 1 (2002), 210–226. issn:0003-4916 https://doi.org/10.1006/aphy.2002.6254
[9]
M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles. 2021. Variational quantum algorithms. Nature Reviews Physics, 3, 9 (2021), 01 Sep, 625–644. issn:2522-5820 https://doi.org/10.1038/s42254-021-00348-9
[10]
Christopher Chamberland, Guanyu Zhu, Theodore J. Yoder, Jared B. Hertzberg, and Andrew W. Cross. 2020. Topological and Subsystem Codes on Low-Degree Graphs with Flag Qubits. Phys. Rev. X, 10 (2020), Jan, 011022. https://doi.org/10.1103/PhysRevX.10.011022
[11]
J. Cheng, H. Deng, and X. Qia. 2020. AccQOC: Accelerating Quantum Optimal Control Based Pulse Generation. In ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). 543–555. https://doi.org/10.1109/ISCA45697.2020.00052
[12]
Alexander Cowtan, Silas Dilkes, Ross Duncan, Will Simmons, and Seyon Sivarajah. 2020. Phase Gadget Synthesis for Shallow Circuits. Electronic Proceedings in Theoretical Computer Science, 318 (2020), May, 213–228. issn:2075-2180 https://doi.org/10.4204/eptcs.318.13
[13]
Alexander Cowtan, Will Simmons, and Ross Duncan. 2020. A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz. arXiv preprint arXiv:2007.10515.
[14]
Andrew W Cross, Lev S Bishop, John A Smolin, and Jay M Gambetta. 2017. Open quantum assembly language. arXiv preprint arXiv:1707.03429.
[15]
Andrew W Cross, Ali Javadi-Abhari, Thomas Alexander, Niel de Beaudrap, Lev S Bishop, Steven Heidel, Colm A Ryan, John Smolin, Jay M Gambetta, and Blake R Johnson. 2021. OpenQASM 3: A broader and deeper quantum assembly language. arXiv preprint arXiv:2104.14722.
[16]
Arianne Meijer-van de Griend and Ross Duncan. 2020. Architecture-aware synthesis of phase polynomials for NISQ devices. arXiv preprint arXiv:2004.06052.
[17]
Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028.
[18]
Richard P Feynman. 1982. Simulating physics with computers. Int. J. Theor. Phys, 21, 6/7 (1982).
[19]
Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. 2012. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A, 86 (2012), Sep, 032324. https://doi.org/10.1103/PhysRevA.86.032324
[20]
Bryan T. Gard, Linghua Zhu, George S. Barron, Nicholas J. Mayhall, Sophia E. Economou, and Edwin Barnes. 2020. Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm. npj Quantum Information, 6, 1 (2020), 28 Jan, 10. issn:2056-6387 https://doi.org/10.1038/s41534-019-0240-1
[21]
P. Gokhale, A. Javadi-Abhari, N. Earnest, Y. Shi, and F. T. Chong. 2020. Optimized Quantum Compilation for Near-Term Algorithms with OpenPulse. In 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 186–200. https://doi.org/10.1109/MICRO50266.2020.00027
[22]
Kaiwen Gui, Teague Tomesh, Pranav Gokhale, Yunong Shi, Frederic T Chong, Margaret Martonosi, and Martin Suchara. 2020. Term grouping and travelling salesperson for digital quantum simulation. arXiv preprint arXiv:2001.05983.
[23]
Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum Algorithm for Linear Systems of Equations. Phys. Rev. Lett., 103 (2009), Oct, 150502. https://doi.org/10.1103/PhysRevLett.103.150502
[24]
Matthew B. Hastings, Dave Wecker, Bela Bauer, and Matthias Troyer. 2015. Improving Quantum Algorithms for Quantum Chemistry. Quantum Info. Comput., 15, 1–2 (2015), jan, 1–21. issn:1533-7146 https://doi.org/10.5555/2685188.2685189
[25]
P. Jordan and E. Wigner. 1928. Über das Paulische Äquivalenzverbot. Zeitschrift für Physik, 47, 9 (1928), 01 Sep, 631–651. issn:0044-3328 https://doi.org/10.1007/BF01331938
[26]
N. Khammassi, I. Ashraf, J. V. Someren, R. Nane, A. M. Krol, M. A. Rol, L. Lao, K. Bertels, and C. G. Almudever. 2021. OpenQL: A Portable Quantum Programming Framework for Quantum Accelerators. J. Emerg. Technol. Comput. Syst., 18, 1 (2021), Article 13, dec, 24 pages. issn:1550-4832 https://doi.org/10.1145/3474222
[27]
Aleks Kissinger and John van de Wetering. 2020. PyZX: Large Scale Automated Diagrammatic Reasoning. Electronic Proceedings in Theoretical Computer Science, 318 (2020), May, 229–241. issn:2075-2180 https://doi.org/10.4204/eptcs.318.14
[28]
Lingling Lao and Dan Browne. 2021. 2QAN: A quantum compiler for 2-local qubit Hamiltonian simulation algorithms. arXiv preprint arXiv:2108.02099.
[29]
Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’19). Association for Computing Machinery, New York, NY, USA. 1001–1014. isbn:9781450362405 https://doi.org/10.1145/3297858.3304023
[30]
Gushu Li, Yunong Shi, and Ali Javadi-Abhari. 2021. Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum Processors. In Proceedings of the 48th Annual International Symposium on Computer Architecture. IEEE Press, 832–845. isbn:9781450390866 https://doi.org/10.1109/ISCA52012.2021.00070
[31]
Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, and Yuan Xie. 2021. On the Co-Design of Quantum Software and Hardware. In Proceedings of the Eight Annual ACM International Conference on Nanoscale Computing and Communication (NANOCOM ’21). Association for Computing Machinery, New York, NY, USA. Article 15, 7 pages. isbn:9781450387101 https://doi.org/10.1145/3477206.3477464
[32]
Seth Lloyd. 1996. Universal Quantum Simulators. Science, 273, 5278 (1996), 1073–1078. https://doi.org/10.1126/science.273.5278.1073 arxiv:https://www.science.org/doi/pdf/10.1126/science.273.5278.1073.
[33]
Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. 2013. Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint arXiv:1307.0411.
[34]
Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. 2014. Quantum principal component analysis. Nature Physics, 10, 9 (2014), 01 Sep, 631–633. issn:1745-2481 https://doi.org/10.1038/nphys3029
[35]
Dmitri Maslov. 2016. Optimal and Asymptotically Optimal NCT Reversible Circuits by the Gate Types. Quantum Info. Comput., 16, 13–14 (2016), oct, 1096–1112. issn:1533-7146 https://doi.org/10.5555/3179430.3179432
[36]
Dmitri Maslov, Gerhard W. Dueck, D. Michael Miller, and Camille Negrevergne. 2008. Quantum Circuit Simplification and Level Compaction. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27, 3 (2008), 436–444. https://doi.org/10.1109/TCAD.2007.911334
[37]
A. McCaskey and T. Nguyen. 2021. A MLIR Dialect for Quantum Assembly Languages. In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE Computer Society, Los Alamitos, CA, USA. 255–264. https://doi.org/10.1109/QCE52317.2021.00043
[38]
Prakash Murali, Jonathan M. Baker, Ali Javadi-Abhari, Frederic T. Chong, and Margaret Martonosi. 2019. Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’19). Association for Computing Machinery, New York, NY, USA. 1015–1029. isbn:9781450362405 https://doi.org/10.1145/3297858.3304075
[39]
Prakash Murali, Dripto M. Debroy, Kenneth R. Brown, and Margaret Martonosi. 2020. Architecting Noisy Intermediate-Scale Trapped Ion Quantum Computers. In Proceedings of the ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA ’20). IEEE Press, 529–542. isbn:9781728146614 https://doi.org/10.1109/ISCA45697.2020.00051
[40]
Prakash Murali, David C. Mckay, Margaret Martonosi, and Ali Javadi-Abhari. 2020. Software Mitigation of Crosstalk on Noisy Intermediate-Scale Quantum Computers. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems. Association for Computing Machinery, New York, NY, USA. 1001–1016. isbn:9781450371025 https://doi.org/10.1145/3373376.3378477
[41]
Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri Maslov. 2018. Automated optimization of large quantum circuits with continuous parameters. npj Quantum Information, 4, 1 (2018), 10 May, 23. issn:2056-6387 https://doi.org/10.1038/s41534-018-0072-4
[42]
Michael A Nielsen and Isaac L Chuang. 2010. Quantum Computation and Quantum Information. Quantum Computation and Quantum Information, by Michael A. Nielsen, Isaac L. Chuang, Cambridge, UK: Cambridge University Press, 2010.
[43]
Shin Nishio, Yulu Pan, Takahiko Satoh, Hideharu Amano, and Rodney Van Meter. 2020. Extracting Success from IBM’s 20-Qubit Machines Using Error-Aware Compilation. J. Emerg. Technol. Comput. Syst., 16, 3 (2020), Article 32, May, 25 pages. issn:1550-4832 https://doi.org/10.1145/3386162
[44]
Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. 2014. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5, 1 (2014), 23 Jul, 4213. issn:2041-1723 https://doi.org/10.1038/ncomms5213
[45]
Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. 2014. Quantum Support Vector Machine for Big Data Classification. Phys. Rev. Lett., 113 (2014), Sep, 130503. https://doi.org/10.1103/PhysRevLett.113.130503
[46]
Zain H Saleem, Bilal Tariq, and Martin Suchara. 2020. Approaches to constrained quantum approximate optimization. arXiv preprint arXiv:2010.06660.
[47]
Yunong Shi, Nelson Leung, Pranav Gokhale, Zane Rossi, David I. Schuster, Henry Hoffmann, and Frederic T. Chong. 2019. Optimized Compilation of Aggregated Instructions for Realistic Quantum Computers. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’19). Association for Computing Machinery, New York, NY, USA. 1031–1044. isbn:9781450362405 https://doi.org/10.1145/3297858.3304018
[48]
Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Caroline Collange, and Fernando Magno Quintao Pereira. 2018. Qubit Allocation. In Proceedings of the 2018 International Symposium on Code Generation and Optimization (CGO 2018). Association for Computing Machinery, New York, NY, USA. 113–125. isbn:9781450356176 https://doi.org/10.1145/3168822
[49]
Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross Duncan. 2020. t ěrt ket〉 : a retargetable compiler for NISQ devices. Quantum Science and Technology, 6, 1 (2020), nov, 014003. https://doi.org/10.1088/2058-9565/ab8e92
[50]
Robert S Smith, Michael J Curtis, and William J Zeng. 2016. A practical quantum instruction set architecture. arXiv preprint arXiv:1608.03355.
[51]
R S Smith, E C Peterson, M G Skilbeck, and E J Davis. 2020. An open-source, industrial-strength optimizing compiler for quantum programs. Quantum Science and Technology, 5, 4 (2020), jul, 044001. https://doi.org/10.1088/2058-9565/ab9acb
[52]
Mathias Soeken and Michael Kirkedal Thomsen. 2013. White Dots Do Matter: Rewriting Reversible Logic Circuits. In Proceedings of the 5th International Conference on Reversible Computation (RC’13). Springer-Verlag, Berlin, Heidelberg. 196–208. isbn:9783642389856 https://doi.org/10.1007/978-3-642-38986-3_16
[53]
Qiming Sun, Timothy C. Berkelbach, Nick S. Blunt, George H. Booth, Sheng Guo, Zhendong Li, Junzi Liu, James D. McClain, Elvira R. Sayfutyarova, Sandeep Sharma, Sebastian Wouters, and Garnet Kin‐Lic Chan. 2017. PySCF: the Python‐based simulations of chemistry framework. e1340 pages. https://doi.org/10.1002/wcms.1340 arxiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1340.
[54]
Masuo Suzuki. 1976. Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems. Communications in Mathematical Physics, 51, 2 (1976), 183–190. https://doi.org/10.1007/BF01609348
[55]
Bochen Tan and Jason Cong. 2020. Optimal Layout Synthesis for Quantum Computing. In Proceedings of the 39th International Conference on Computer-Aided Design (ICCAD ’20). Association for Computing Machinery, New York, NY, USA. Article 137, 9 pages. isbn:9781450380263 https://doi.org/10.1145/3400302.3415620
[56]
Swamit S. Tannu and Moinuddin Qureshi. 2019. Ensemble of Diverse Mappings: Improving Reliability of Quantum Computers by Orchestrating Dissimilar Mistakes. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO ’52). Association for Computing Machinery, New York, NY, USA. 253–265. isbn:9781450369381 https://doi.org/10.1145/3352460.3358257
[57]
Swamit S. Tannu and Moinuddin K. Qureshi. 2019. Not All Qubits Are Created Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’19). Association for Computing Machinery, New York, NY, USA. 987–999. isbn:9781450362405 https://doi.org/10.1145/3297858.3304007
[58]
Andrew Tranter, Peter J. Love, Florian Mintert, and Peter V. Coveney. 2018. A Comparison of the Bravyi–Kitaev and Jordan–Wigner Transformations for the Quantum Simulation of Quantum Chemistry. Journal of Chemical Theory and Computation, 14, 11 (2018), 5617–5630. https://doi.org/10.1021/acs.jctc.8b00450 arxiv:https://doi.org/10.1021/acs.jctc.8b00450. 30189144
[59]
H. F. Trotter. 1959. On the Product of Semi-Groups of Operators. Proc. Amer. Math. Soc., 10, 4 (1959), 545–551. issn:00029939, 10886826 https://doi.org/10.2307/2033649
[60]
Ewout van den Berg and Kristan Temme. 2020. Circuit optimization of Hamiltonian simulation by simultaneous diagonalization of Pauli clusters. Quantum, 4 (2020), Sept., 322. issn:2521-327X https://doi.org/10.22331/q-2020-09-12-322
[61]
Vivien Vandaele, Simon Martiel, and Timothée Goubault de Brugière. 2021. Phase polynomials synthesis algorithms for NISQ architectures and beyond. arXiv preprint arXiv:2104.00934.
[62]
Xin-Chuan Wu, Dripto M. Debroy, Yongshan Ding, Jonathan M. Baker, Yuri Alexeev, Kenneth R. Brown, and Frederic T. Chong. 2021. TILT: Achieving Higher Fidelity on a Trapped-Ion Linear-Tape Quantum Computing Architecture. 153–166. https://doi.org/10.1109/HPCA51647.2021.00023
[63]
A. Zulehner, A. Paler, and R. Wille. 2019. An Efficient Methodology for Mapping Quantum Circuits to the IBM QX Architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38, 7 (2019), 1226–1236. https://doi.org/10.1109/TCAD.2018.2846658

Cited By

View all
  • (2024)SimuQ: A Framework for Programming Quantum Hamiltonian Simulation with Analog CompilationProceedings of the ACM on Programming Languages10.1145/36329238:POPL(2425-2455)Online publication date: 5-Jan-2024
  • (2024)Fermihedral: On the Optimal Compilation for Fermion-to-Qubit EncodingProceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 310.1145/3620666.3651371(382-397)Online publication date: 27-Apr-2024
  • (2024)Red-QAOA: Efficient Variational Optimization through Circuit ReductionProceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 210.1145/3620665.3640363(980-998)Online publication date: 27-Apr-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ASPLOS '22: Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems
February 2022
1164 pages
ISBN:9781450392051
DOI:10.1145/3503222
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 22 February 2022

Check for updates

Badges

Author Tags

  1. compiler
  2. quantum computing
  3. quantum simulation

Qualifiers

  • Research-article

Funding Sources

Conference

ASPLOS '22

Acceptance Rates

Overall Acceptance Rate 535 of 2,713 submissions, 20%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)579
  • Downloads (Last 6 weeks)68
Reflects downloads up to 01 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2024)SimuQ: A Framework for Programming Quantum Hamiltonian Simulation with Analog CompilationProceedings of the ACM on Programming Languages10.1145/36329238:POPL(2425-2455)Online publication date: 5-Jan-2024
  • (2024)Fermihedral: On the Optimal Compilation for Fermion-to-Qubit EncodingProceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 310.1145/3620666.3651371(382-397)Online publication date: 27-Apr-2024
  • (2024)Red-QAOA: Efficient Variational Optimization through Circuit ReductionProceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 210.1145/3620665.3640363(980-998)Online publication date: 27-Apr-2024
  • (2024)Quantum Vulnerability Analysis to Guide Robust Quantum Computing System DesignIEEE Transactions on Quantum Engineering10.1109/TQE.2023.33436255(1-11)Online publication date: 2024
  • (2024)The Quantum Circuit Model is not a Practical Representation of Quantum Software2024 IEEE International Conference on Software Analysis, Evolution and Reengineering - Companion (SANER-C)10.1109/SANER-C62648.2024.00025(146-148)Online publication date: 12-Mar-2024
  • (2024)Atomique: A Quantum Compiler for Reconfigurable Neutral Atom Arrays2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)10.1109/ISCA59077.2024.00030(293-309)Online publication date: 29-Jun-2024
  • (2024)Tetris: A Compilation Framework for VQA Applications in Quantum Computing2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)10.1109/ISCA59077.2024.00029(277-292)Online publication date: 29-Jun-2024
  • (2024)Bosehedral: Compiler Optimization for Bosonic Quantum Computing2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)10.1109/ISCA59077.2024.00028(261-276)Online publication date: 29-Jun-2024
  • (2024)Practical circuit optimization algorithm for quantum simulation based on template matchingQuantum Information Processing10.1007/s11128-023-04252-223:2Online publication date: 1-Feb-2024
  • (2023)A Systematic Literature Review on Optimization Techniques for Quantum Computing CompilersAnais Estendidos do XXIV Simpósio em Sistemas Computacionais de Alto Desempenho (SSCAD Estendido 2023)10.5753/wscad_estendido.2023.235804(25-32)Online publication date: 17-Oct-2023
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media