Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Learning Images Across Scales Using Adversarial Training

Published: 19 July 2024 Publication History

Abstract

The real world exhibits rich structure and detail across many scales of observation. It is difficult, however, to capture and represent a broad spectrum of scales using ordinary images. We devise a novel paradigm for learning a representation that captures an orders-of-magnitude variety of scales from an unstructured collection of ordinary images. We treat this collection as a distribution of scale-space slices to be learned using adversarial training, and additionally enforce coherency across slices. Our approach relies on a multiscale generator with carefully injected procedural frequency content, which allows to interactively explore the emerging continuous scale space. Training across vastly different scales poses challenges regarding stability, which we tackle using a supervision scheme that involves careful sampling of scales. We show that our generator can be used as a multiscale generative model, and for reconstructions of scale spaces from unstructured patches. Significantly outperforming the state of the art, we demonstrate zoom-in factors of up to 256x at high quality and scale consistency.

Supplementary Material

ZIP File (papers_715.zip)
supplemental

References

[1]
Andreas Antoniou. 2006. Digital signal processing. McGraw-Hill.
[2]
Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan. 2021. Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. In ICCV. 5855--5864.
[3]
Yash Belhe, Michaël Gharbi, Matthew Fisher, Iliyan Georgiev, Ravi Ramamoorthi, and Tzu-Mao Li. 2023. Discontinuity-Aware 2D Neural Fields. ACM Trans. Graph. 42, 6, Article 217 (dec 2023), 11 pages.
[4]
Sefi Bell-Kligler, Assaf Shocher, and Michal Irani. 2019. Blind Super-Resolution Kernel Estimation using an Internal-GAN. In NeurIPS, Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2019/file/5fd0b37cd7dbbb00f97ba6ce92bf5add-Paper.pdf
[5]
Sergei Belousov. 2021. Mobilestylegan: A lightweight convolutional neural network for high-fidelity image synthesis. arXiv preprint arXiv:2104.04767 (2021).
[6]
Sam Bond-Taylor and Chris G. Willcocks. 2024. ∞-Diff: Infinite Resolution Diffusion with Subsampled Mollified States. In ICLR.
[7]
Ashish Bora, Eric Price, and Alexandros G Dimakis. 2018. AmbientGAN: Generative models from lossy measurements. In ICLR.
[8]
David J Brady, Michael E Gehm, Ronald A Stack, Daniel L Marks, David S Kittle, Dathon R Golish, EM Vera, and Steven D Feller. 2012. Multiscale gigapixel photography. Nature 486, 7403 (2012), 386--389.
[9]
Peter J Burt. 1981. Fast filter transform for image processing. Computer graphics and image processing 16, 1 (1981), 20--51.
[10]
Lucy Chai, Michaël Gharbi, Eli Shechtman, Phillip Isola, and Richard Zhang. 2022. Any-Resolution Training for High-Resolution Image Synthesis. In ECCV. 170--188.
[11]
Kelvin C.K. Chan, Xintao Wang, Xiangyu Xu, Jinwei Gu, and Chen Change Loy. 2021. GLEAN: Generative Latent Bank for Large-Factor Image Super-Resolution. In CVPR. 14245--14254.
[12]
Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and Wen Gao. 2021b. Pre-Trained Image Processing Transformer. In CVPR. 12299--12310.
[13]
Yinbo Chen, Sifei Liu, and Xiaolong Wang. 2021a. Learning Continuous Image Representation With Local Implicit Image Function. In CVPR. 8628--8638.
[14]
Mengyu Chu, You Xie, Jonas Mayer, Laura Leal-Taixé, and Nils Thuerey. 2020. Learning temporal coherence via self-supervision for GAN-based video generation. ACM Trans. Graph. 39, 4, Article 75 (aug 2020), 13 pages.
[15]
Copernicus. 2024. Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A. Copernicus Sentinel data. Accessed 2024-01-24.
[16]
Oliver S Cossairt, Daniel Miau, and Shree K Nayar. 2011. Gigapixel computational imaging. In ICCP. 1--8.
[17]
Ingrid Daubechies. 1988. Orthonormal bases of compactly supported wavelets. Communications on pure and applied mathematics 41, 7 (1988), 909--996.
[18]
Stavros Diolatzis, Jan Novak, Fabrice Rousselle, Jonathan Granskog, Miika Aittala, Ravi Ramamoorthi, and George Drettakis. 2023. MesoGAN: Generative Neural Reflectance Shells. In Computer Graphics Forum. Wiley Online Library.
[19]
Charles Eames and Ray Eames. 1968. Powers of Ten (film). In Pyramid Films.
[20]
Alexei A. Efros and William T. Freeman. 2001. Image quilting for texture synthesis and transfer. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '01). Association for Computing Machinery, New York, NY, USA, 341--346.
[21]
Alexei A. Efros and Thomas K. Leung. 1999. Texture synthesis by non-parametric sampling. In ICCV, Vol. 2. 1033--1038.
[22]
Patrick Esser, Robin Rombach, and Bjorn Ommer. 2021. Taming Transformers for High-Resolution Image Synthesis. In CVPR. 12873--12883.
[23]
Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico Kolter. 2020. Multiplicative filter networks. In ICLR.
[24]
Anna Frühstück, Ibraheem Alhashim, and Peter Wonka. 2019. TileGAN: synthesis of large-scale non-homogeneous textures. ACM Trans. Graph. 38, 4, Article 58 (jul 2019), 11 pages.
[25]
Sicheng Gao, Xuhui Liu, Bohan Zeng, Sheng Xu, Yanjing Li, Xiaoyan Luo, Jianzhuang Liu, Xiantong Zhen, and Baochang Zhang. 2023. Implicit Diffusion Models for Continuous Super-Resolution. In CVPR. 10021--10030.
[26]
Daniel Glasner, Shai Bagon, and Michal Irani. 2009. Super-resolution from a single image. In ICCV. 349--356.
[27]
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In NeurIPS. 2672--2680.
[28]
Sarkis Halladjian, Haichao Miao, David Kouřil, M Eduard Gröller, Ivan Viola, and Tobias Isenberg. 2019. Scale Trotter: Illustrative visual travels across negative scales. IEEE TVCG 26, 1 (2019), 654--664.
[29]
Charles Han, Eric Risser, Ravi Ramamoorthi, and Eitan Grinspun. 2008. Multiscale texture synthesis. ACM Trans. Graph. 27, 3 (aug 2008), 1--8.
[30]
Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. 2017. Gans trained by a two time-scale update rule converge to a local nash equilibrium. NIPS 30 (2017).
[31]
Xuecai Hu, Haoyuan Mu, Xiangyu Zhang, Zilei Wang, Tieniu Tan, and Jian Sun. 2019. Meta-SR: A Magnification-Arbitrary Network for Super-Resolution. In CVPR. 1575--1584.
[32]
Taizo Iijima. 1959. Basic theory of pattern observation. Technical Group on Automata and Automatic Control (1959), 3--32.
[33]
Michal Irani and Shmuel Peleg. 1991. Improving resolution by image registration. CVGIP: Graphical models and image processing 53, 3 (1991), 231--239.
[34]
Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. 2020a. Training generative adversarial networks with limited data. NeurIPS 33 (2020), 12104--12114.
[35]
Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. 2021. Alias-free generative adversarial networks. NeurIPS 34 (2021), 852--863.
[36]
Tero Karras, Samuli Laine, and Timo Aila. 2019. A Style-Based Generator Architecture for Generative Adversarial Networks. In CVPR. 4401--4410.
[37]
Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. 2020b. Analyzing and Improving the Image Quality of StyleGAN. In CVPR. 8110--8119.
[38]
Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. 2022. Denoising Diffusion Restoration Models. In NeurIPS, Vol. 35. Curran Associates, Inc., 23593--23606. https://proceedings.neurips.cc/paper_files/paper/2022/file/95504595b6169131b6ed6cd72eb05616-Paper-Conference.pdf
[39]
Staffan Klashed, Per Hemingsson, Carter Emmart, Matthew Cooper, and Anders Ynnerman. 2010. Uniview - Visualizing the Universe. In Eurographics 2010 - Areas Papers, Matthew Cooper and Kari Pulli (Eds.). The Eurographics Association, 37--43.
[40]
Jan J Koenderink. 1984. The structure of images. Biological cybernetics 50, 5 (1984), 363--370.
[41]
Johannes Kopf, Matt Uyttendaele, Oliver Deussen, and Michael F. Cohen. 2007. Capturing and viewing gigapixel images. ACM Trans. Graph. 26, 3 (jul 2007), 93--es.
[42]
Alexandr Kuznetsov, Krishna Mullia, Zexiang Xu, Miloš Hašan, and Ravi Ramamoorthi. 2021. NeuMIP: multi-resolution neural materials. ACM Trans. Graph. 40, 4, Article 175 (jul 2021), 13 pages.
[43]
Yuseung Lee, Kunho Kim, Hyunjin Kim, and Minhyuk Sung. 2023. SyncDiffusion: Coherent Montage via Synchronized Joint Diffusions. In Thirty-seventh Conference on Neural Information Processing Systems.
[44]
Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. 2021. SwinIR: Image Restoration Using Swin Transformer. In ICCV Workshops. 1833--1844.
[45]
Jian Liang, Chenfei Wu, Xiaowei Hu, Zhe Gan, Jianfeng Wang, Lijuan Wang, Zicheng Liu, Yuejian Fang, and Nan Duan. 2022. NUWA-Infinity: Autoregressive over Autoregressive Generation for Infinite Visual Synthesis. In NeurIPS, Vol. 35. Curran Associates, Inc., 15420--15432. https://proceedings.neurips.cc/paper_files/paper/2022/file/6358cd0cd6607fdf4870595795eb1710-Paper-Conference.pdf
[46]
Cody Licorish, Noura Faraj, and Brian Summa. 2021. Adaptive Compositing and Navigation of Variable Resolution Images. In Computer Graphics Forum, Vol. 40. Wiley Online Library, 138--150.
[47]
Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. 2017. Enhanced Deep Residual Networks for Single Image Super-Resolution. In CVPR Workshops. 136--144.
[48]
Chieh Hubert Lin, Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, and Ming-Hsuan Yang. 2022. InfinityGAN: Towards Infinite-Pixel Image Synthesis. In ICLR. https://openreview.net/forum?id=ufGMqIM0a4b
[49]
Chieh Hubert Lin, Hsin-Ying Lee, Willi Menapace, Menglei Chai, Aliaksandr Siarohin, Ming-Hsuan Yang, and Sergey Tulyakov. 2023b. InfiniCity: Infinite-Scale City Synthesis. In ICCV. 22808--22818.
[50]
Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Ben Fei, Bo Dai, Wanli Ouyang, Yu Qiao, and Chao Dong. 2023a. Diffbir: Towards blind image restoration with generative diffusion prior. arXiv preprint arXiv:2308.15070 (2023).
[51]
Tony Lindeberg. 2013. Scale-space theory in computer vision. Vol. 256. Springer Science & Business Media.
[52]
Tony Lindeberg. 2022. Scale-covariant and scale-invariant Gaussian derivative networks. Journal of Mathematical Imaging and Vision 64, 3 (2022), 223--242.
[53]
David B. Lindell, Dave Van Veen, Jeong Joon Park, and Gordon Wetzstein. 2022. BACON: Band-Limited Coordinate Networks for Multiscale Scene Representation. In CVPR. 16252--16262.
[54]
Liying Lu, Wenbo Li, Xin Tao, Jiangbo Lu, and Jiaya Jia. 2021. MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution. In CVPR. 6368--6377.
[55]
Stephane G. Mallat. 1989. A theory for multiresolution signal decomposition: the wavelet representation. IEEE PAMI 11, 7 (1989), 674--693.
[56]
Benoit B. Mandelbrot. 1982. The fractal geometry of nature. Vol. 1. WH freeman New York.
[57]
David Marr and Ellen Hildreth. 1980. Theory of edge detection. Proceedings of the Royal Society of London. Series B. Biological Sciences 207, 1167 (1980), 187--217.
[58]
Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi, and Cynthia Rudin. 2020. PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models. In CVPR. 2437--2445.
[59]
Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. 2018. Which Training Methods for GANs do actually Converge?. In ICML (Proceedings of Machine Learning Research, Vol. 80). PMLR, 3481--3490. https://proceedings.mlr.press/v80/mescheder18a.html
[60]
Tomer Michaeli and Michal Irani. 2014. Blind deblurring using internal patch recurrence. In ECCV. Springer, 783--798.
[61]
Haneen Mohammed, Ali K Al-Awami, Johanna Beyer, Corrado Cali, Pierre Magistretti, Hanspeter Pfister, and Markus Hadwiger. 2017. Abstractocyte: A visual tool for exploring nanoscale astroglial cells. IEEE TVCG 24, 1 (2017), 853--861.
[62]
Brian B. Moser, Federico Raue, Stanislav Frolov, Sebastian Palacio, Jörn Hees, and Andreas Dengel. 2023. Hitchhiker's Guide to Super-Resolution: Introduction and Recent Advances. IEEE PAMI (2023), 1--21.
[63]
Evangelos Ntavelis, Mohamad Shahbazi, Iason Kastanis, Radu Timofte, Martin Danelljan, and Luc Van Gool. 2022. Arbitrary-Scale Image Synthesis. In CVPR. 11533--11542.
[64]
Jim R Parker. 2010. Algorithms for image processing and computer vision. John Wiley & Sons.
[65]
Hallison Paz, Tiago Novello, Vinicius Silva, Guilherme Schardong, Luiz Schirmer, Fabio Chagas, Helio Lopes, and Luiz Velho. 2022. Multiresolution Neural Networks for Imaging. In 2022 35th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Vol. 1. 174--179.
[66]
Rijksmuseum. 2019. Operation Nightwatch.
[67]
Carlos Rodriguez-Pardo and Elena Garces. 2022. SeamlessGAN: Self-Supervised Synthesis of Tileable Texture Maps. IEEE TVCG (2022).
[68]
Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. 1998. A metric for distributions with applications to image databases. In ICCV. IEEE, 59--66.
[69]
Shibani Santurkar, David Budden, and Nir Shavit. 2018. Generative compression. In 2018 Picture Coding Symposium (PCS). IEEE, 258--262.
[70]
Vishwanath Saragadam, Jasper Tan, Guha Balakrishnan, Richard G. Baraniuk, and Ashok Veeraraghavan. 2022. MINER: Multiscale Implicit Neural Representation. In ECCV. 318--333.
[71]
Axel Sauer, Katja Schwarz, and Andreas Geiger. 2022. StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets. In ACM SIGGRAPH 2022 Conference Proceedings (Vancouver, BC, Canada) (SIGGRAPH '22). Association for Computing Machinery, New York, NY, USA, Article 49, 10 pages.
[72]
Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. 2019. SinGAN: Learning a Generative Model From a Single Natural Image. In ICCV. 4570--4580.
[73]
Shayan Shekarforoush, David Lindell, David J Fleet, and Marcus A Brubaker. 2022. Residual Multiplicative Filter Networks for Multiscale Reconstruction. In NeurIPS, Vol. 35. Curran Associates, Inc., 8550--8563. https://proceedings.neurips.cc/paper_files/paper/2022/file/38e491559eb9e4cf31b8cd3a4e222436-Paper-Conference.pdf
[74]
Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz, Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan Wang. 2016. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In CVPR. 1874--1883.
[75]
Assaf Shocher, Shai Bagon, Phillip Isola, and Michal Irani. 2019. InGAN: Capturing and Retargeting the "DNA" of a Natural Image. In ICCV. 4492--4501.
[76]
Assaf Shocher, Nadav Cohen, and Michal Irani. 2018. "Zero-Shot" Super-Resolution Using Deep Internal Learning. In CVPR. 3118--3126.
[77]
Xavier Snelgrove. 2017. High-resolution multi-scale neural texture synthesis. In SIGGRAPH Asia 2017 Technical Briefs (Bangkok, Thailand) (SA '17). Association for Computing Machinery, New York, NY, USA, Article 13, 4 pages.
[78]
Sanghyun Son and Kyoung Mu Lee. 2021. SRWarp: Generalized Image Super-Resolution under Arbitrary Transformation. In CVPR. 7782--7791.
[79]
Gaochao Song, Qian Sun, Luo Zhang, Ran Su, Jianfeng Shi, and Ying He. 2023. OPE-SR: Orthogonal Position Encoding for Designing a Parameter-Free Upsampling Module in Arbitrary-Scale Image Super-Resolution. In CVPR. 10009--10020.
[80]
EJ Speyerer, MS Robinson, BW Denevi, LROC Science Team, et al. 2011. Lunar Reconnaissance Orbiter Camera global morphological map of the Moon. In 42nd Annual Lunar and Planetary Science Conference. 2387.
[81]
Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural Geometric Level of Detail: Real-Time Rendering With Implicit 3D Shapes. In CVPR. 11358--11367.
[82]
Wenbo Tao, Xiaoyu Liu, Yedi Wang, Leilani Battle, Çağatay Demiralp, Remco Chang, and Michael Stonebraker. 2019. Kyrix: Interactive pan/zoom visualizations at scale. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 529--540.
[83]
Zachary Teed and Jia Deng. 2020. Raft: Recurrent all-pairs field transforms for optical flow. In ECCV. Springer, 402--419.
[84]
Cristina N. Vasconcelos, Cengiz Oztireli, Mark Matthews, Milad Hashemi, Kevin Swersky, and Andrea Tagliasacchi. 2023. CUF: Continuous Upsampling Filters. (June 2023), 9999--10008.
[85]
Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK Chan, and Chen Change Loy. 2023c. Exploiting Diffusion Prior for Real-World Image Super-Resolution. arXiv preprint arXiv:2305.07015 (2023).
[86]
Longguang Wang, Yingqian Wang, Zaiping Lin, Jungang Yang, Wei An, and Yulan Guo. 2021a. Learning a Single Network for Scale-Arbitrary Super-Resolution. In ICCV. 4801--4810.
[87]
Xiaojuan Wang, Janne Kontkanen, Brian Curless, Steve Seitz, Ira Kemelmacher, Ben Mildenhall, Pratul Srinivasan, Dor Verbin, and Aleksander Holynski. 2023a. Generative Powers of Ten. arXiv preprint (2023).
[88]
Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. 2021b. Real-ESRGAN: Training Real-World Blind Super-Resolution With Pure Synthetic Data. In ICCV Workshops. 1905--1914.
[89]
Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change Loy. 2018. ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. In ECCV Workshops.
[90]
Yinhuai Wang, Jiwen Yu, Runyi Yu, and Jian Zhang. 2023b. Unlimited-Size Diffusion Restoration. In CVPR. 1160--1167.
[91]
Zhihao Wang, Jian Chen, and Steven CH Hoi. 2020. Deep learning for image super-resolution: A survey. IEEE PAMI 43, 10 (2020), 3365--3387.
[92]
Min Wei and Xuesong Zhang. 2023. Super-Resolution Neural Operator. In CVPR. 18247--18256.
[93]
Norbert Wiener, Norbert Wiener, Cyberneticist Mathematician, Norbert Wiener, Norbert Wiener, and Cybernéticien Mathématicien. 1949. Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications. Vol. 113. MIT press Cambridge, MA.
[94]
Lance Williams. 1983. Pyramidal parametrics. In Proceedings of the 10th Annual Conference on Computer Graphics and Interactive Techniques (Detroit, Michigan, USA) (SIGGRAPH '83). Association for Computing Machinery, New York, NY, USA, 1--11.
[95]
Andrew P Witkin. 1987. Scale-space filtering. In Readings in Computer Vision. Elsevier, 329--332.
[96]
Bartosz Wojczynski. 2021. 2.2 Gigapixel Milky Way. https://artuniverse.eu
[97]
Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao, Anyi Rao, Christian Theobalt, Bo Dai, and Dahua Lin. 2022. BungeeNeRF: Progressive Neural Radiance Field for Extreme Multi-scale Scene Rendering. In ECCV. 106--122.
[98]
Xingqian Xu, Zhangyang Wang, and Humphrey Shi. 2021. Ultrasr: Spatial encoding is a missing key for implicit image function-based arbitrary-scale super-resolution. arXiv preprint arXiv:2103.12716 (2021).
[99]
Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and Baining Guo. 2020. Learning Texture Transformer Network for Image Super-Resolution. In CVPR. 5791--5800.
[100]
Qinsheng Zhang, Jiaming Song, Xun Huang, Yongxin Chen, and Ming-Yu Liu. 2023. DiffCollage: Parallel Generation of Large Content With Diffusion Models. In CVPR. 10188--10198.
[101]
Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. 2018a. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR. 586--595.
[102]
Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. 2018b. Image Super-Resolution Using Very Deep Residual Channel Attention Networks. In ECCV. 286--301.
[103]
Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. 2018c. Residual Dense Network for Image Super-Resolution. In CVPR. 2472--2481.
[104]
Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski, Daniel Cohen-Or, and Hui Huang. 2018. Non-stationary texture synthesis by adversarial expansion. ACM Trans. Graph. 37, 4, Article 49 (jul 2018), 13 pages.
[105]
Jialin Zhu and Tom Kelly. 2021. Seamless Satellite-image Synthesis. In Computer Graphics Forum, Vol. 40. Wiley Online Library, 193--204.
[106]
Maria Zontak and Michal Irani. 2011. Internal statistics of a single natural image. In CVPR 2011. 977--984.
[107]
U. Çoğalan, M. Bemana, HP. Seidel, and K. Myszkowski. 2023. Video frame interpolation for high dynamic range sequences captured with dual-exposure sensors. Computer Graphics Forum 42, 2 (2023), 119--131.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 43, Issue 4
July 2024
1774 pages
EISSN:1557-7368
DOI:10.1145/3675116
Issue’s Table of Contents
This work is licensed under a Creative Commons Attribution International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 19 July 2024
Published in TOG Volume 43, Issue 4

Check for updates

Author Tags

  1. image synthesis
  2. reconstruction
  3. scale space
  4. compression

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 153
    Total Downloads
  • Downloads (Last 12 months)153
  • Downloads (Last 6 weeks)82
Reflects downloads up to 06 Oct 2024

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media