Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3677386.3682097acmconferencesArticle/Chapter ViewAbstractPublication PagessuiConference Proceedingsconference-collections
research-article
Open access

Support Lines and Grids for Depth Ordering in Indoor Augmented Reality using Optical See-Through Head-Mounted Displays

Published: 07 October 2024 Publication History

Abstract

X-ray vision is a technique where Augmented Reality is used to display occluded real world objects, giving users the impression of being able to see through objects or humans. However, displaying occluded objects means that occlusion is not a reliable depth cue anymore which can lead to incorrect depth ordering. Additional depth cues like support lines and grids showed predominantly positive results with respect to depth perception in AR in previous studies. However, their impact on the ordinal depth estimation in x-ray vision applications has not been evaluated yet. While multiple different designs for lines and grids have been proposed, they have not been compared against each other. We conducted a within-subject user study with 48 participants to explore different support line and grid combinations for x-ray vision in indoor environments. Our results suggest that additional depth cues can result in an increased mental demand and should be selected carefully.

Supplemental Material

MP4 File
User Study Video

References

[1]
Haley Adams, Jeanine Stefanucci, Sarah Creem-Regehr, and Bobby Bodenheimer. 2022. Depth Perception in Augmented Reality: The Effects of Display, Shadow, and Position. In Conference on Virtual Reality and 3D User Interfaces (Christchurch, New Zealand) (VR ’22). IEEE, New York, NY, USA, 792–801. https://doi.org/10.1109/VR51125.2022.00101
[2]
Benjamin Avery, Christian Sandor, and Bruce H. Thomas. 2009. Improving Spatial Perception for Augmented Reality X-Ray Vision. In Virtual Reality Conference (Lafayette, LA, USA) (VR ’09). IEEE, New York, NY, USA, 79–82. https://doi.org/10.1109/VR.2009.4811002
[3]
Ryan Bane and Tobias Höllerer. 2004. Interactive tools for virtual x-ray vision in mobile augmented reality. In International Symposium on Mixed and Augmented Reality (Arlington, VA, USA) (ISMAR ’04). IEEE and ACM, New York, NY, USA, 231–239. https://doi.org/10.1109/ISMAR.2004.36
[4]
Christoph Bichlmeier, Maksym Kipot, Stuart Holdstock, Sandro Michael Heining, Ekkehard Euler, and Nassir Navab. 2009. A Practical Approach for Intraoperative Contextual In-Situ Visualization. In Proceedings of the 5th Workshop on Augmented Environments for Medical Imaging including Augmented Reality in Computer-Aided Surgery (London, UK) (AMI-ARCS ’09). Imperial College London, London, UK, 19–26.
[5]
Nicola Binetti, Luyan Wu, Shiping Chen, Ernst Kruijff, Simon Julier, and Duncan P. Brumby. 2021. Using visual and auditory cues to locate out-of-view objects in head-mounted augmented reality. Displays 69 (2021), 1–9. https://doi.org/10.1016/j.displa.2021.102032
[6]
Tobias Blum, Ralf Stauder, Ekkehard Euler, and Nassir Navab. 2012. Superman-like X-ray vision: Towards brain-computer interfaces for medical augmented reality. In International Symposium on Mixed and Augmented Reality (Atlanta, GA, USA) (ISMAR ’12). IEEE, New York, NY, USA, 271–272. https://doi.org/10.1109/ISMAR.2012.6402569
[7]
Matthew L. Bolton, Elliot Biltekoff, and Laura Humphrey. 2023. The Mathematical Meaninglessness of the NASA Task Load Index: A Level of Measurement Analysis. Transactions on Human-Machine Systems 53, 3 (June 2023), 590–599. https://doi.org/10.1109/THMS.2023.3263482
[8]
Jiazhou Chen, Xavier Granier, Naiyang Lin, and Qunsheng Peng. 2010. On-Line Visualization of Underground Structures Using Context Features. In Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology (Hong Kong, China) (VRST ’10). ACM, New York, NY, USA, 167––170. https://doi.org/10.1145/1889863.1889898
[9]
Thomas J. Clarke. 2021. Depth Perception using X-Ray Visualizations. In International Symposium on Mixed and Augmented Reality Adjunct (Bari, Italy) (ISMAR-Adjunct ’21). IEEE, New York, NY, USA, 483–486. https://doi.org/10.1109/ISMAR-Adjunct54149.2021.00114
[10]
Thomas J. Clarke, Wolfgang Mayer, Joanne E. Zucco, Brandon J. Matthews, and Ross T. Smith. 2022. Adapting VST AR X-Ray Vision Techniques to OST AR. In International Symposium on Mixed and Augmented Reality Adjunct (Singapore, Singapore) (ISMAR-Adjunct ’22). IEEE, New York, NY, USA, 495–500. https://doi.org/10.1109/ISMAR-Adjunct57072.2022.00104
[11]
Lacey Colligan, Henry W.W. Potts, Chelsea T. Finn, and Robert A. Sinkin. 2015. Cognitive workload changes for nurses transitioning from a legacy system with paper documentation to a commercial electronic health record. International Journal of Medical Informatics 84, 7 (July 2015), 469–476. https://doi.org/10.1016/j.ijmedinf.2015.03.003
[12]
James E. Cutting. 2003. Reconceiving Perceptual Space. In Looking into Pictures: An Interdisciplinary Approach to Pictorial Space, Heiko Hecht, Margaret Atherton, and Robert Schwartz (Eds.). MIT Press, Cambridge, MA, USA, Chapter 11, 215–238. https://doi.org/10.7551/mitpress/4337.003.0016
[13]
James E. Cutting and Peter M. Vishton. 1995. Perceiving Layout and Knowing Distances: The Integration, Relative Potency, and Contextual Use of Different Information about Depth. In Perception of Space and Motion: Handbook of Perception and Cognition, William Epstein and Sheena Rogers (Eds.). Academic Press, Cambridge, MA, USA, Chapter 3, 69–117. https://doi.org/10.1016/B978-012240530-3/50005-5
[14]
Arindam Dey, Andrew Cunningham, and Christian Sandor. 2010. Evaluating Depth Perception of Photorealistic Mixed Reality Visualizations for Occluded Objects in Outdoor Environments. In Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology (Hong Kong, China) (VRST ’10). ACM, New York, NY, USA, 211––218. https://doi.org/10.1145/1889863.1889911
[15]
Arindam Dey, Graeme Jarvis, Christian Sandor, and Gerhard Reitmayr. 2012. Tablet versus phone: Depth perception in handheld augmented reality. In International Symposium on Mixed and Augmented Reality (Atlanta, GA, USA) (ISMAR ’12). IEEE, New York, NY, USA, 187–196. https://doi.org/10.1109/ISMAR.2012.6402556
[16]
David Drascic and Paul Milgram. 1996. Perceptual issues in augmented reality. In Stereoscopic Displays and Virtual Reality Systems III (San Jose, CA, USA), Mark T. Bolas, Scott S. Fisher, Mark T. Bolas, Scott S. Fisher, and John O. Merritt (Eds.). Vol. 2653. SPIE, Bellingham, WA, USA, 123–134. https://doi.org/10.1117/12.237425
[17]
Franz Faul, Edgar Erdfelder, Axel Buchner, and Albert-Georg Lang. 2009. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods 41, 4 (Nov. 2009), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149
[18]
Kristina Flägel, Britta Galler, Jost Steinhäuser, and Katja Götz. 2019. Der „National Aeronautics and Space Administration-Task Load Index“ (NASA-TLX) – ein Instrument zur Erfassung der Arbeitsbelastung in der hausärztlichen Sprechstunde: Bestimmung der psychometrischen Eigenschaften. Zeitschrift für Evidenz, Fortbildung und Qualität im Gesundheitswesen 147–148 (Nov. 2019), 90–96. https://doi.org/10.1016/j.zefq.2019.10.003
[19]
Michael Glueck, Keenan Crane, Sean Anderson, Andres Rutnik, and Azam Khan. 2009. Multiscale 3D reference visualization. In Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games (Boston, MA, USA) (I3D ’09). ACM, New York, NY, USA, 225––232. https://doi.org/10.1145/1507149.1507186
[20]
Jerônimo G. Grandi, Zekun Cao, Mark Ogren, and Regis Kopper. 2021. Design and Simulation of Next-Generation Augmented Reality User Interfaces in Virtual Reality. In Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (Lisbon, Portugal) (VRW ’21). IEEE, New York, NY, USA, 23–29. https://doi.org/10.1109/VRW52623.2021.00011
[21]
A. V. Pascal Grosset, Mathias Schott, Georges-Pierre Bonneau, and Charles D. Hansen. 2013. Evaluation of Depth of Field for depth perception in DVR. In Pacific Visualization Symposium (Sydney, NSW, Australia) (PacificVis ’13). IEEE, New York, NY, USA, 81–88. https://doi.org/10.1109/PacificVis.2013.6596131
[22]
Tovi Grossman and Ravin Balakrishnan. 2006. An evaluation of depth perception on volumetric displays. In Proceedings of the Working Conference on Advanced Visual Interfaces (Venezia, Italy) (AVI ’06). ACM, New York, NY, USA, 193––200. https://doi.org/10.1145/1133265.1133305
[23]
Uwe Grünefeld, Yvonne Brück, and Susanne Boll. 2020. Behind the Scenes: Comparing X-Ray Visualization Techniques in Head-Mounted Optical See-through Augmented Reality. In Proceedings of the 19th International Conference on Mobile and Ubiquitous Multimedia (Essen, Germany) (MUM ’20), Jessica Cauchard and Markus Löchtefeld (Eds.). ACM, New York, NY, USA, 179––185. https://doi.org/10.1145/3428361.3428402
[24]
Hung-Jui Guo, Jonathan Bakdash, Laura Marusich, and Balakrishnan Prabhakaran. 2022. Dynamic X-Ray Vision in Mixed Reality. In Proceedings of the 28th ACM Symposium on Virtual Reality Software and Technology (Tsukuba, Japan) (VRST ’22), Takafumi Koike, Naoya Koizumi, Gerd Bruder, Daniel Roth, Kazuki Takashima, Takefumi Hiraki, Yuki Ban, and Michal Piovarci (Eds.). ACM, New York, NY, USA, 1–2. https://doi.org/10.1145/3562939.3565675
[25]
Sandra G. Hart. 2006. Nasa-Task Load Index (NASA-TLX); 20 Years Later. In Proceedings of the Human Factors and Ergonomics Society 50th Annual Meeting (San Francisco, CA, USA) (HFES ’06, Vol. 50). Sage Publishing, Thousand Oaks, CA, USA, 904–908. https://doi.org/10.1177/154193120605000909
[26]
Sandra G. Hart and Lowell E. Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In Human Mental Workload, Peter A. Hancock and Najmedin Meshkati (Eds.). Advances in Psychology, Vol. 52. Elsevier, Amsterdam, Netherlands, 139–183. https://doi.org/10.1016/S0166-4115(08)62386-9
[27]
Florian Heinrich, Kai Bornemann, Kai Lawonn, and Christian Hansen. 2019. Depth Perception in Projective Augmented Reality: An Evaluation of Advanced Visualization Techniques. In Proceedings of the 25th ACM Symposium on Virtual Reality Software and Technology (Parramatta, NSW, Australia) (VRST ’19), Tomas Trescak, Simeon Simoff, Deborah Richards, Anton Bogdanovych, Thierry Duval, Torsten Kuhlen, Huyen Nguyen, Shigeo Morishima, Yuichi Itoh, Richard Skarbez, Anton Bogdanovych, and Martin Masek (Eds.). ACM, New York, NY, USA, 1–11. https://doi.org/10.1145/3359996.3364245
[28]
Julian E. Hochberg and Edward McAlister. 1955. Relative Size vs. Familiar Size in the Perception of Represented Depth. The American Journal of Psychology 68, 2 (June 1955), 294–296. https://doi.org/10.2307/1418903
[29]
Sture Holm. 1979. A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics 6, 2 (1979), 65–70.
[30]
J. Adam Jones, J. Edward Swan, Gurjot Singh, Eric Kolstad, and Stephen R. Ellis. 2008. The effects of virtual reality, augmented reality, and motion parallax on egocentric depth perception. In Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization (Los Angeles, CA, USA) (APGV ’08). ACM, New York, NY, USA, 9––14. https://doi.org/10.1145/1394281.1394283
[31]
Volkert Jurgens, Andy Cockburn, and Mark Billinghurst. 2006. Depth cues for augmented reality stakeout. In Proceedings of the 7th ACM SIGCHI New Zealand chapter’s international conference on Computer-human interaction: design centered HCI (Christchurch, New Zealand) (CHINZ ’06). ACM, New York, NY, USA, 117––124. https://doi.org/10.1145/1152760.1152775
[32]
Marta Kersten-Oertel, Sean Jy-Shyang Chen, and D. Louis Collins. 2014. An Evaluation of Depth Enhancing Perceptual Cues for Vascular Volume Visualization in Neurosurgery. Transactions on Visualization and Computer Graphics 20, 3 (March 2014), 391–403. https://doi.org/10.1109/TVCG.2013.240
[33]
Sonny E. H. Kirkley Jr.2003. Augmented reality performance assessment battery (ARPAB): Object recognition, distance estimation and size estimation using optical see-through head-worn displays. Ph. D. Dissertation. Indiana University, Bloomington, IN, USA. Advisor(s) Siegel, Martin A. UMI 3094185.
[34]
Max Krichenbauer, Goshiro Yamamoto, Takafumi Taketom, Christian Sandor, and Hirokazu Kato. 2018. Augmented Reality versus Virtual Reality for 3D Object Manipulation. Transactions on Visualization and Computer Graphics 24, 2 (Feb. 2018), 1038–1048. https://doi.org/10.1109/TVCG.2017.2658570
[35]
Ernst Kruijff, J. Edward Swan, and Steven Feiner. 2010. Perceptual issues in augmented reality revisited. In International Symposium on Mixed and Augmented Reality (Seoul, South Korea) (ISMAR ’10). IEEE, New York, NY, USA, 3–12. https://doi.org/10.1109/ISMAR.2010.5643530
[36]
Marc T. M. Lambooij, Wijnand A. IJsselsteijn, and Ingrid Heynderickx. 2007. Visual discomfort in stereoscopic displays: a review. In Stereoscopic Displays and Virtual Reality Systems XIV (San Jose, CA, United States), Andrew J. Woods, Neil A. Dodgson, John O. Merritt, Nicolas S. Holliman, Mark T. Bolas, and Ian E. McDowall (Eds.). Vol. 6490. SPIE, Bellingham, WA, USA. https://doi.org/10.1117/12.705527
[37]
Kai Lawonn, Maria Luz, Bernhard Preim, and Christian Hansen. 1015. Illustrative Visualization of Vascular Models for Static 2D Representations. In Medical Image Computing and Computer-Assisted Intervention (München, Germany) (MICCAI ’15, Vol. 9350), Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro Frangi (Eds.). Springer, Heidelberg, Germany, 399–406. https://doi.org/10.1007/978-3-319-24571-3_48
[38]
Lee Lisle, Kyle Tanous, Hyungil Kim, Joseph L. Gabbard, and Doug A. Bowman. 2018. Effect of Volumetric Displays on Depth Perception in Augmented Reality. In Proceedings of the 10th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (Toronto, ON, Canada) (AutomotiveUI ’18). ACM, New York, NY, USA, 155––163. https://doi.org/10.1145/3239060.3239083
[39]
Fei Liu and Stefan Seipel. 2018. Precision study on augmented reality-based visual guidance for facility management tasks. Automation in Construction 90 (June 2018), 79–90. https://doi.org/10.1016/j.autcon.2018.02.020
[40]
Mark A. Livingston, Zhuming Ai, Kevin Karsch, and Gregory O. Gibson. 2011. User interface design for military AR applications. Virtual Reality 15 (June 2011), 175–184. https://doi.org/10.1007/s10055-010-0179-1
[41]
Mark A. Livingston, Zhuming Ai, J. Edward Swan, and Harvey S. Smallman. 2009. Indoor vs. Outdoor Depth Perception for Mobile Augmented Reality. In Virtual Reality Conference (Lafayette, LA, USA) (VR ’09). IEEE, New York, NY, USA, 55–62. https://doi.org/10.1109/VR.2009.4810999
[42]
Mark A. Livingston, Arindam Dey, Christian Sandor, and Bruce H. Thomas. 2013. Pursuit of “X-Ray Vision” for Augmented Reality. In Human Factors in Augmented Reality Environments, Weidong Huang, Leila Alem, and Mark A. Livingston (Eds.). Springer, Heidelberg, Germany, Chapter 4, 67–107. https://doi.org/10.1007/978-1-4614-4205-9_4
[43]
Mark A. Livingston, J. Edward Swan, Joseph L. Gabbard, Tobias H. Höllerer, Deborah Hix, Simon J. Julier, Yohan Baillot, and Dennis Brown. 2003. Resolving multiple occluded layers in augmented reality. In Proceedings of the Second International Symposium on Mixed and Augmented Reality (International Symposium on Mixed and Augmented Reality) (ISMAR ’03). IEEE, New York, NY, USA, 56–65. https://doi.org/10.1109/ISMAR.2003.1240688
[44]
Martin Luboschik, Philip Berger, and Oliver Staadt. 2016. On Spatial Perception Issues In Augmented Reality Based Immersive Analytics. In Proceedings of the 2016 ACM Companion on Interactive Surfaces and Spaces (Niagara Falls, ON, Canada) (ISS ’16 Companion). ACM, New York, NY, USA, 47––53. https://doi.org/10.1145/3009939.3009947
[45]
Márcio C. F. Macedo and Antônio L. Apolinário. 2023. Occlusion Handling in Augmented Reality: Past, Present and Future. Transactions on Visualization and Computer Graphics 29, 2 (Feb. 2023), 1590–1609. https://doi.org/10.1109/TVCG.2021.3117866
[46]
Daniel Medeiros, Maurício Sousa, Daniel Mendes, Alberto Raposo, and Joaquim Jorge. 2016. Perceiving depth: optical versus video see-through. In Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology (Garching bei München, Germany) (VRST ’16). ACM, New York, NY, USA, 237––240. https://doi.org/10.1145/2993369.2993388
[47]
Jakob Nielsen. 1994. Enhancing the Explanatory Power of Usability Heuristics. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Boston, MA, USA) (CHI ’94), Beth Adelson, Susan Dumais, and Judith Olson (Eds.). ACM, New York, NY, USA, 152––158. https://doi.org/10.1145/191666.191729
[48]
Mai Otsuki, Hideaki Kuzuoka, and Paul Milgram. 2015. Analysis of depth perception with virtual mask in stereoscopic AR. In Proceedings of the 25th International Conference on Artificial Reality and Telexistence and 20th Eurographics Symposium on Virtual Environments (Kyoto, Japan) (ICAT - EGVE ’15), Masataka Imura, Pablo Figueroa, and Betty Mohler (Eds.). Eurographics Association, Eindhoven, Netherlands, 45–52. https://doi.org/10.2312/egve.20151309
[49]
Etienne Peillard, Ferran Argelaguet, Jean-Marie Normand, Anatole Lécuyer, and Guillaume Moreau. 2019. Studying Exocentric Distance Perception in Optical See-Through Augmented Reality. In International Symposium on Mixed and Augmented Reality (Beijing, China) (ISMAR ’19). IEEE, New York, NY, USA, 115–122. https://doi.org/10.1109/ISMAR.2019.00-13
[50]
Jannick P. Rolland, William Gibson, and Dan Ariely. 1995. Towards Quantifying Depth and Size Perception in Virtual Environments. Presence: Teleoperators and Virtual Environments 4, 1 (Feb. 1995), 24–49. https://doi.org/10.1162/pres.1995.4.1.24
[51]
Christian Sandor, Andrew Cunningham, Arindam Dey, and Ville-Veikko Mattila. 2010. An augmented reality x-ray system based on visual saliency. In International Symposium on Mixed and Augmented Reality (Seoul, South Korea) (ISMAR ’10). IEEE, New York, NY, USA, 27–36. https://doi.org/10.1109/ISMAR.2010.5643547
[52]
Gerhard Schall, Erick Mendez, Ernst Kruijff, Eduardo Veas, Sebastian Junghanns, Bernhard Reitinger, and Dieter Schmalstieg. 2009. Handheld augmented reality for underground infrastructure visualization. Personal and Ubiquitous Computing 13, 4 (May 2009), 281–291. https://doi.org/10.1007/s00779-008-0204-5
[53]
Gurjot Singh, J. Edward Swan, J. Adam Jones, and Stephen R. Ellis. 2010. Depth judgment measures and occluding surfaces in near-field augmented reality. In Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization (Los Angeles, CA, USA) (APGV ’10). ACM, New York, NY, USA, 149––156. https://doi.org/10.1145/1836248.1836277
[54]
Sheng Su, Sen Gu, Yiqian Zhao, Zhengyu Chen, Hanyu Wang, and Wen Yang. 2020. Human-Ocular-Physiological-Characteristics- Based Adaptive Console Design. Access 8 (June 2020), 109596–109607. https://doi.org/10.1109/ACCESS.2020.3002543
[55]
J. Edward Swan, Adam Jones, Eric Kolstad, Mark A. Livingston, and Harvey S. Smallman. 2007. Egocentric depth judgments in optical, see-through augmented reality. Transactions on Visualization and Computer Graphics 13, 3 (May-June 2007), 429–442. https://doi.org/10.1109/TVCG.2007.1035
[56]
J. Edward Swan, Mark A. Livingston, Harvey S. Smallman, Dennis Brown, Yohan Baillot, Joseph L. Gabbard, and Deborah Hix. 2006. A Perceptual Matching Technique for Depth Judgments in Optical, See-Through Augmented Reality. In Virtual Reality Conference (Alexandria, VA, USA) (VR ’06). IEEE, New York, NY, USA, 19–26. https://doi.org/10.1109/VR.2006.13
[57]
Haoyu Tan, Tongyu Nie, and Evan Suma Rosenberg. 2024. Invisible Mesh: Effects of X-Ray Vision Metaphors on Depth Perception in Optical-See-Through Augmented Reality. In Conference Virtual Reality and 3D User Interfaces (Orlando, FL, USA) (VR ’24). IEEE, New York, NY, USA, 376–386. https://doi.org/10.1109/VR58804.2024.00059
[58]
Takahiro Tsuda, Haruyoshi Yamamoto, Yoshinari Kameda, and Yuichi Ohta. 2005. Visualization methods for outdoor see-through vision. In Proceedings of the 2005 international conference on Augmented tele-existence (Christchurch, New Zealand) (ICAT ’05). ACM, New York, NY, USA, 62–69. https://doi.org/10.1145/1152399.1152412
[59]
Anthony Webster, Steven Feiner, Blair MacIntyre, William Massie, and Theodore Krueger. 1996. Augmented reality in architectural construction, inspection and renovation. In Proceedings of the Third Congress held in conjunction with A/E/C Systems ’96 (Anaheim, CA, USA) (Computing in Civil Engineering ’96), Jorge Vanegas and Paul Chinowsky (Eds.). ASCE, New York, NY, USA, 913–919.
[60]
Franziska Westermeier, Larissa Brübach, Carolin Wienrich, and Marc Erich Latoschik. 2024. Assessing Depth Perception in VR and Video See-Through AR: A Comparison on Distance Judgment, Performance, and Preference. Transactions on Visualization and Computer Graphics 30, 5 (May 2024), 2140–2150. https://doi.org/10.1109/TVCG.2024.3372061
[61]
Stefanie Zollmann, Raphael Grasset, Gerhard Reitmayr, and Tobias Langlotz. 2014. Image-Based X-Ray Visualization Techniques for Spatial Understanding in Outdoor Augmented Reality. In Proceedings of the 26th Australian Computer-Human Interaction Conference on Designing Futures: The Future of Design (Sydney, New South Wales, Australia) (OzCHI ’14). ACM, New York, NY, USA, 194––203. https://doi.org/10.1145/2686612.2686642
[62]
Stefanie Zollmann, Christof Hoppe, Tobias Langlotz, and Gerhard Reitmayr. 2014. FlyAR: Augmented Reality Supported Micro Aerial Vehicle Navigation. Transactions on Visualization and Computer Graphics 20, 4 (April 2014), 560–568. https://doi.org/10.1109/TVCG.2014.24
[63]
Stefanie Zollmann, Denis Kalkofen, Erick Mendez, and Gerhard Reitmayr. 2010. Image-based ghostings for single layer occlusions in augmented reality. In International Symposium on Mixed and Augmented Reality (Seoul, South Korea) (ISMAR ’10). IEEE, New York, NY, USA, 19–26. https://doi.org/10.1109/ISMAR.2010.5643546

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SUI '24: Proceedings of the 2024 ACM Symposium on Spatial User Interaction
October 2024
396 pages
ISBN:9798400710889
DOI:10.1145/3677386
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 October 2024

Check for updates

Author Tags

  1. Augmented reality
  2. depth cues
  3. depth perception
  4. grids
  5. support lines
  6. user study
  7. x-ray vision

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

SUI '24

Acceptance Rates

Overall Acceptance Rate 86 of 279 submissions, 31%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 111
    Total Downloads
  • Downloads (Last 12 months)111
  • Downloads (Last 6 weeks)38
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media