Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Beyond the conventional transistor

Published: 01 March 2002 Publication History

Abstract

This paper focuses on approaches to continuing CMOS scaling by introducing new device structures and new materials. Starting from an analysis of the sources of improvements in device performance, we present technology options for achieving these performance enhancements. These options include high-dielectric-constant (high-k) gate dielectric, metal gate electrode, double-gate FET, and strained-silicon FET. Nanotechnology is examined in the context of continuing the progress in electronic systems enabled by silicon microelectronics technology. The carbon nanotube field-effect transistor is examined as an example of the evaluation process required to identify suitable nanotechnologies for such purposes.

References

[1]
International Technology Roadmap for Semiconductors, 1999 Edition, Semiconductor Industry Association (SIA), Austin, Texas: SEMATECH, USA, 2706 Montopolis Drive, Austin, Texas 78741; http://www.itrs.net/ntrs/ publntrs.nsf.
[2]
G. Moore, "Progress in Digital Integrated Electronics," IEDM Tech. Digest, pp. 11-13 (1975).
[3]
R. Dennard, F. H. Gaensslen, H. N. Yu, L. Rideout, E. Bassous, and A. R. LeBlanc, "Design of Ion-Implanted MOSFET's with Very Small Physical Dimensions," IEEE J. Solid State Circuits SC-9, 256 (1974).
[4]
P. Packan, "Pushing the Limits," Science 285, 2079 (1999).
[5]
B. Hoeneisen and C. A. Mead, "Fundamental Limitations in Microelectronics--I MOS Technology," Solid State Electron. 15, 819 (1972).
[6]
J. Meindl, "Low Power Microelectronics--Retrospect and Prospect," Proc. IEEE 83, 619 (1995).
[7]
S. Asai and Y. Wada, "Technology Challenges for Integration Near and Below 0.1 µm," Proc. IEEE 85, 505 (1997).
[8]
Y. Taur, D. Buchanan, W. Chen, D. Frank, K. Ismail, S.-H. Lo, G. Sai-Halasz, R. Viswanathan, H.-J. C. Wann, S. Wind, and H.-S. Wong, "CMOS Scaling into the Nanometer Regime," Proc. IEEE 85, 486 (1997).
[9]
H.-S. P. Wong, D. Frank, P. M. Solomon, H.-J. Wann, and J. Welser, "Nanoscale CMOS," Proc. IEEE 87, 537 (1999).
[10]
D. Frank, R. Dennard, E. Nowak, P. Solomon, Y. Taur, and H.-S. Wong, "Device Scaling Limits of Si MOSFETs and Their Application Dependencies," Proc. IEEE 89, 259 -288 (2001).
[11]
R. W. Keyes, "Fundamental Limits of Silicon Technology," Proc. IEEE 89, 227-239 (2001).
[12]
J. Plummer and P. Griffin, "Material and Process Limits in Silicon VLSI Technology," Proc. IEEE 89, 240-258 (2001).
[13]
R. Chau, J. Kavalieros, B. Roberds, R. Schenker, D. Lionberger, D. Barlage, B. Doyle, R. Arghvani, A. Murthy, and G. Dewey, "30 nm Physical Gate Length CMOS Transistors with 1.0 ps n-MOS and 1.7 ps p-MOS Gate Delays," IEDM Tech. Digest, pp. 45-48 (2000).
[14]
R. Chau, "30 nm and 20 nm Physical Gate Length CMOS Transistors," Proceedings of the IEEE Silicon Nanoelectronics Workshop, 2001, pp. 2-3.
[15]
B. Yu, H. Wang, A. Joshi, Q. Xiang, E. Ibok, and M. Lin, "15 nm Gate Length Planar CMOS Transistor," IEDM Tech. Digest, p. 937 (2001).
[16]
S.-H. Lo, D. Buchanan, Y. Taur, and W. Wang, "Quantum-Mechanical Modeling of Electron Tunneling Current from the Inversion Layer of Ultra-Thin-Oxide nMOSFETs," IEEE Electron Device Lett. 18, 209-211 (1997).
[17]
D. A. Buchanan, "Scaling the Gate Dielectric: Materials, Integration, and Reliability," IBM J. Res. & Dev. 43, 245-264 (1999).
[18]
E. P. Gusev, H.-C. Lu, E. L. Garfunkel, T. Gustafsson, and M. L. Green, "Growth and Characterization of Ultrathin Nitrided Silicon Dioxide Films," IBM J. Res. & Dev. 43, 265-286 (1999).
[19]
K. Hubbard and D. Schlom, "Thermodynamic Stability of Binary Oxides in Contact with Silicon," J. Mater. Res. 11, 2757 (1996).
[20]
E. Gusev, E. Cartier, D. Buchanan, M. Gribelyuk, M. Copel, H. Okorn-Schmidt, and C. D'Emic, "Ultra High-k Metal Oxides on Silicon: Processing, Characterization, and Integration Issues," Proceedings of the Conference on Insulating Films on Semiconductors (INFOS), 2001.
[21]
E. Gusev, D. Buchanan, E. Cartier, A. Kumar, D. DiMaria, S. Guha, A. Callegari, S. Zafar, P. Jamison, D. Neumayer, M. Copel, M. Gribelyuk, H. Okorn-Schmidt, C. D'Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L.-A. Rannarsson, P. Ronsheim, K. Rim, R. Fleming, A. Mocuta, and A. Ajmera, "Ultrathin High-k Gate Stacks for Advanced CMOS Devices," IEDM Tech. Digest, pp. 451-454 (2001).
[22]
D. Frank and H.-S. P. Wong, "Analysis of the Design Space Available for High-k Gate Dielectric in Nanoscale MOSFETs," Proceedings of the IEEE Silicon Nanoelectronics Workshop, 2000, pp. 47-48.
[23]
S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981.
[24]
T. Ning, C. Osburn, and H. Yu, "Emission Probability of Hot Electrons from Silicon into Silicon Dioxide," J. Appl. Phys. 48, 286 (1977).
[25]
J. Robertson, "Band Offsets of Wide-Band-Gap Oxides and Implications for Future Electronic Devices," J. Vac. Sci. Technol. B 18, 1785-1791 (2000).
[26]
D. Buchanan, E. Gusev, E. Cartier, H. Okorn-Schmidt, K. Rim, M. Gribelyuk, A. Mocuta, A. Ajmera, M. Copel, S. Guha, N. Bojarczuk, A. Callegari, C. D'Emic, P. Kozlowski, K. Chan, R. J. Fleming, P. Jamison, J. Brown, and R. Arndt, "80 nm Poly-Silicon Gated n-FETs with Ultra-Thin Al2O3 Gate Dielectric for ULSI Applications," IEDM Tech. Digest, pp. 223-226 (2000).
[27]
M. Fischetti, D. Neumayer, and E. Cartier, "Effective Electron Mobility in Si Inversion Layers in MOS Systems with a High-κ Insulator: The Role of Remote Phonon Scattering," J. Appl. Phys. 90, 4587 (2001).
[28]
M. Fischetti, "Long Range Coulomb Interactions in Small Si Devices. Part II: Effective Electron Mobility in Thin Oxide Structures," J. Appl. Phys. 89, 1232-1250 (2001).
[29]
T.-J. King, J. Pfiester, and K. Saraswat, "A Variable Work-Function Polycrystalline Si1-x Ge x Gate Material for Submicrometer CMOS Technologies," IEEE Electron Device Lett. 12, 533-535 (1991).
[30]
J. Hauser, "Gate Dielectrics for Sub-100 nm CMOS," in IEDM Short Course: Sub-100 nm CMOS, M. Bohr, Ed., IEDM Tech. Digest (1999).
[31]
Y.-S. Suh, G. Heuss, H. Zhong, S.-N. Hong, and V. Misra, "Electrical Characteristics of TaSi x N y Gate Electrodes for Dual Gate Si-CMOS Devices," Symposium on VLSI Technology, Digest of Technical Papers, 2001, pp. 47-48.
[32]
D.-G. Park, K.-Y. Lim, H.-J. Cho, T.-H. Cha, J.-J. Kim, J.-K. Ko, I.-S. Yeo, and J.-W. Park, "Novel Damage-Free Direct Metal Gate Process Using Atomic Layer Deposition," Symposium on VLSI Technology, Digest of Technical Papers, 2001, pp. 65-66.
[33]
J. Tersoff, "Theory of Semiconductor Heterojunctions: The Role of Quantum Dipoles," Phys. Rev. B 30, 4874 (1984).
[34]
Y.-C. Yeo, P. Ranade, Q. Lu, R. Lin, T.-J. King, and C. Hu, "Effects of High-κ Dielectrics on the Workfunctions of Metal and Silicon Gates," Symposium on VLSI Technology, Digest of Technical Papers, 2001, pp. 49-50.
[35]
A. Chatterjee, R. Chapman, G. Dixit, J. Kuehne, S. Hattangady, H. Yang, G. Brown, R. Aggarwal, U. Erdogan, Q. He, M. Hanratty, D. Rogers, S. Murtaza, S. Fang, R. Kraft, A. Rotondaro, J. Hu, M. Terry, W. Lee, C. Fernando, A. Konecni, G. Wells, D. Frystak, C. Bowen, M. Rodder, and I.-C. Chen, "Sub-100 nm Gate Length Metal Gate NMOS Transistors Fabricated by a Replacement Gate Process," IEDM Tech. Digest, pp. 821- 824 (1997).
[36]
Q. Lu, R. Lin, P. Ranade, T.-J. King, and C. Hu, "Metal Gate Workfunction Adjustment for Future CMOS Technology," Symposium on VLSI Technology, Digest of Technical Papers, 2001, pp. 45-46.
[37]
I. Polishchuk, P. Ranade, T.-J. King, and C. Hu, "Dual Workfunction Metal Gate CMOS Technology Using Metal Interdiffusion," IEEE Electron Device Lett. 22, 444-446 (2001).
[38]
T. Sekigawa and Y. Hayashi, "Calculated Threshold-Voltage Characteristics of an XMOS Transistor Having an Additional Bottom Gate," Solid State Electron. 27, 827 (1984).
[39]
F. Balestra, S. Cristoloveanu, M. Benachir, J. Brini, and T. Elewa, "Double-Gate Silicon-on-Insulator Transistor with Volume Inversion: A New Device with Greatly Enhanced Performance," IEEE Electron Device Lett. 8, 410 (1987).
[40]
J. Colinge, M. Gao, A. Romano-Rodriguez, H. Maes, and C. Claeys, "Silicon-on-Insulator Gate-All-Around Device," IEDM Tech. Digest, p. 595 (1990).
[41]
C. Fiegna, H. Iwai, T. Wada, T. Saito, E. Sangiorgi, and B. Ricco, "A New Scaling Methodology for the 0.1-0.025 µm MOSFET," Symposium on VLSI Technology, Digest of Technical Papers, 1992, p. 33.
[42]
D. Frank, S. Laux, and M. Fischetti, "Monte Carlo Simulation of a 30nm Dual-Gate MOSFET: How Far Can Si Go?," IEDM Tech. Digest, p. 553 (1992).
[43]
R. Yan, A. Ourmazd, and K. Lee, "Scaling the Si MOSFET: From Bulk to SOI to Bulk," IEEE Trans. Electron Devices 39, 1704 (1992).
[44]
K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, and Y. Arimoto, "Scaling Theory for Double-Gate SOI MOSFET's," IEEE Trans. Electron Devices 40, 2326 (1993).
[45]
T. Tanaka, K. Suzuki, H. Horie, and T. Sugii, "Ultrafast Low-Power Operation of p+ - n+ Double-Gate SOI MOSFETs," Symposium on VLSI Technology, Digest of Technical Papers, 1994, p. 11.
[46]
H.-S. Wong, D. Frank, Y. Taur, and J. Stork, "Design and Performance Considerations for Sub-0.1 µm Double-Gate SOI MOSFET's," IEDM Tech. Digest, p. 747 (1994).
[47]
Y. Taur, C. Wann, and D. J. Frank, "25 nm CMOS Design Considerations," IEDM Tech. Digest, pp. 789-792 (1998).
[48]
H.-S. P. Wong, "Novel Device Options for Sub-100 nm CMOS," in IEDM Short Course: Sub-100 nm CMOS, M. Bohr, Ed., presented at the IEEE International Electron Devices Meeting, 1999.
[49]
I. Yang, C. Vieri, A. Chandrakasan, and D. Antoniadis, "Back-Gated CMOS on SOIAS for Dynamic Threshold Voltage Control," IEEE Trans. Electron Devices 44, 822 (1997).
[50]
H.-S. Wong, D. Frank, and P. Solomon, "Device Design Considerations for Double-Gate, Ground-Plane, and Single-Gated Ultra-Thin SOI MOSFET's at the 25 nm Channel Length Generation," IEDM Tech. Digest, p. 407 (1998).
[51]
D. Frank, Y. Taur, and H.-S. P. Wong, "Generalized Scale Length for Two-Dimensional Effects in MOSFET's," IEEE Electron Device Lett. 19, 385 (1998).
[52]
C. Y. Chang and S. M. Sze, Eds., ULSI Devices, Wiley, New York, 2000, Ch. 3.
[53]
L. Chang, S. Tang, T.-J. King, J. Bokor, and C. Hu, "Gate Length Scaling and Threshold Voltage Control of Double-Gate MOSFETs," IEDM Tech. Digest, pp. 719-722 (2000).
[54]
S. Tang, L. Chang, N. Lindert, Y.-K. Choi, W.-C. Lee, X. Huang, V. Subramanian, J. Bokor, T.-J. King, and C. Hu, "FinFET--A Quasi-Planar Double-Gate MOSFET," ISSCC Tech. Digest, pp. 118-119 (2001).
[55]
Y. Taur, "Analytic Solutions of Charge and Capacitance in Symmetric and Asymmetric Double-Gate MOSFETs," IEEE Trans. Electron Devices 48, 2861 (2001).
[56]
M. Ieong, H.-S. P. Wong, Y. Taur, P. Oldiges, and D. Frank, "DC and AC Performance Analysis of 25 nm Symmetric/Asymmetric Double-Gate, Back-Gate and Bulk CMOS," Proceedings of the Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2000, pp. 147-150.
[57]
C. Kittel, Introduction to Solid State Physics, Wiley, New York, 1956, Ch. 11, p. 283.
[58]
T. Tanaka, H. Horie, S. Ando, and S. Hijiya, "Analysis of p + Poly Si Double-Gate Thin-Film SOI MOSFETs," IEDM Tech. Digest, p. 683 (1991).
[59]
M. Sherony, L. Su, J. Chung, and D. Antoniadis, "SOI MOSFET Effective Channel Mobility," IEEE Trans. Electron Devices 41, 276-278 (1994).
[60]
S. Takagi, I. Iwase, and A. Toriumi, "On the Universality of Inversion-Layer Mobility in n- and p-Channel MOSFET's," IEDM Tech. Digest, p. 398 (1988).
[61]
M. Ieong, E. Jones, T. Kanarsky, Z. Ren, O. Dokumaci, R. Roy, L. Shi, T. Furukawa, Y. Taur, R. Miller, and H.-S. P. Wong, "Experimental Evaluation of Carrier Transport and Device Design for Planar Symmetric/Asymmetric Double-Gate/Ground-Plane CMOSFETs," IEDM Tech. Digest, pp. 441-444 (2001).
[62]
J.-H. Choi, Y.-J. Park, and H.-S. Min, "Electron Mobility Behavior in Extremely Thin SOI MOSFETs," IEEE Electron Device Lett. 16, 527 (1995).
[63]
A. Toriumi, J. Koga, H. Satake, and A. Ohata, "Performance and Reliability Concerns of Ultra-Thin SOI and Ultra-Thin Gate Oxide MOSFETs," IEDM Tech. Digest, p. 847 (1995).
[64]
T. Ernst, D. Munteanu, S. Cristoloveanu, T. Ouisse, S. Horiguchi, Y. Ono, Y. Takahashi, and K. Murase, "Investigation of SOI MOSFETs with Ultimate Thickness," Microelectron. Eng. 48, 339-342 (1999).
[65]
M. Shoji and S. Horiguchi, "Electronic Structures and Phonon-Limited Electron Mobility of Double-Gate Silicon-on-Insulator Si Inversion Layers," J. Appl. Phys. 85, 2722 (1999).
[66]
F. Gamiz, J. A. Lopez-Villanueva, J. Roldan, J. Carceller, and P. Cartujo, "Monte Carlo Simulation of Electron Transport Properties in Extremely Thin SOI MOSFETs," IEEE Trans. Electron Devices, p. 1122 (1998).
[67]
F. Gamiz, J. Roldan, P. Cartujo-Cassinello, J. Carceller, J. Lopez-Villanueva, and S. Rodriguez, "Electron Mobility in Extremely Thin Single-Gate Silicon-on-Insulator Inversion Layers," J. Appl. Phys, p. 6269 (1999).
[68]
D. Esseni, M. Mastrapasqua, G. Celler, F. Baumann, C. Fiegna, L. Selmi, and E. Sangiorgi, "Low Field Mobility of Ultra-Thin SOI n- and p-MOSFETs: Measurements and Implications on the Performance of Ultra-Short MOSFETs," IEDM Tech. Digest, pp. 671-674 (2000).
[69]
D. Esseni, M. Mastrapasqua, C. Fiegna, G. Celler, L. Selmi, and E. Sangiorgi, "Low Field Electron Mobility in Double-Gate Ultra-Thin SOI MOSFETs," IEDM Tech. Digest, p. 445 (2001).
[70]
E. Leobandung, J. Gu, L. Guo, and S. Chou, "Wire Channel and Wrap Around Gate Metal Oxide Semiconductor Field Effect Transistors with a Significant Reduction of Short Channel Effects," J. Vac. Sci. Technol. B 15, 2791-2794 (1997).
[71]
H.-S. Wong, K. Chan, and Y. Taur, "Self-Aligned (Top and Bottom) Double-Gate MOSFET with a 25 nm Thick Silicon Channel," IEDM Tech. Digest, p. 427 (1997).
[72]
G. Neudeck, T.-C. Su, and J. P. Denton, "Novel Silicon Epitaxy for Advanced MOSFET Devices," IEDM Tech. Digest, pp. 169-172 (2000).
[73]
J.-H. Lee, G. Tarashi, A. Wei, T. Langdo, E. A. Fitzgerald, and D. Antoniadis, "Super Self-Aligned Double-Gate (SSDG) MOSFETs Utilizing Oxidation Rate Difference and Selective Epitaxy," IEDM Tech. Digest, p. 71 (1999).
[74]
K. W. Guarini, P. M. Solomon, Y. Zhang, K. K. Chan, E. C. Jones, G. M. Cohen, A. Krasnoperova, M. Ronay, O. Dokumaci, J. J. Bucchignano, C. C. Jr., C. Lavoie, V. Ku, D. C. Boyd, K. S. Petrarca, I. V. Babich, J. Treichler, P. M. Kozlowski, J. S. Newbury, C. P. D Emic, R. M. Sicina, and H.-S. P. Wong, "Triple-Self-Aligned, Planar Double-Gate MOSFETs: Devices and Circuits," IEDM Tech. Digest, pp. 425-428 (2001).
[75]
S. Venkatesan, C. Subramanian, G. Neudeck, and J. Denton, "Thin-Film Silicon-on-Insulator (SOI) Device Applications of Selective Epitaxial Growth," Proceedings of the International SOI Conference, 1993, p. 76.
[76]
J. Siekkinen, G. Neudeck, J. Glenn, and S. Venkatesan, "A Novel High-Speed Silicon Bipolar Transistor Utilizing SEG and CLSEG," IEEE Trans. Electron Devices, p. 862 (1994).
[77]
A. Ogura and Y. Fujimoto, "Extremely Thin and Defect-Free Si-on-Insulator Fabrication by Tunnel Epitaxy," Appl. Phys. Lett. 57, 2806 (1990).
[78]
A. Ogura, A. Furuya, and R. Koh, "50-nm-Thick Silicon-on-Insulator Fabrication by Advanced Epitaxial Lateral Overgrowth: Tunnel Epitaxy," J. Electrochem. Soc. 140, 1125 (1993).
[79]
H.-S. Wong, K. Chan, Y. Lee, P. Roper, and Y. Taur, "Ultra-Thin, Highly Uniform Thin Film SOI MOSFET with Low Series Resistance Fabricated Using Pattern-Constrained Epitaxy (PACE)," Symposium on VLSI Technology, Digest of Technical Papers, 1996, p. 94.
[80]
G. Cohen and H.-S. P. Wong, "Self-Aligned Double-Gate MOSFET by Selective Epitaxy and Silicon Wafer Bonding Techniques," Technical Report, 1999; patent pending.
[81]
X. Huang, W.-C. Lee, C. Ku, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, and C. Hu, "Sub 50-nm FinFET: PMOS," IEDM Tech. Digest, p. 67 (1999).
[82]
D. Hisamoto, T. Kaga, Y. Kawamoto, and E. Takeda, "A Fully Depleted Lean-Channel Transistor (DELTA)-- A Novel Vertical Ultra Thin SOI MOSFET," IEDM Tech. Digest, p. 833 (1989).
[83]
D. Fried, A. Johnson, E. Nowak, J. Rankin, and C. Willets, "A Sub-40 nm Body Thickness N-Type FinFET," Proceedings of the Device Research Conference, 2001, p. 24.
[84]
N. Lindert, L. Chang, Y.-K. Choi, E. Anderson, W.-C. Lee, T.-J. King, J. Bokor, and C. Hu, "Sub-60-nm Quasi-Planar FinFETs Fabricated Using a Simplified Process," IEEE Electron Device Lett. 22, 487-489 (2001).
[85]
J. Kedzierski, D. M. Fried, E. J. Nowak, T. Kanarsky, J. H. Rankin, H. Hanafi, W. Natzle, D. Boyd, Y. Zhang, R. A. Roy, J. Newbury, C. Yu, Q. Yang, P. Saunders, C. P. Willets, A. Johnson, S. P. Cole, H. E. Young, N. Carpenter, D. Rakowski, B. A. Rainey, P. E. Cottrell, M. Ieong, and H.-S. P. Wong, "High-Performance Symmetric-Gate and CMOS-Compatible V t Asymmetric-Gate FinFET Devices," IEDM Tech. Digest, pp. 437-440 (2001).
[86]
Y.-K. Choi, N. Lindert, P. Xuan, S. Tang, D. Ha, E. Anderson, T.-J. King, J. Bokor, and C. Hu, "FinFET Process Technology for Nanoscale CMOS," IEDM Tech. Digest, p. 421 (2001).
[87]
D. Hisamoto, W.-C. Lee, J. Kedzierski, E. Anderson, H. Takeuchi, K. Asano, T.-J. King, J. Bokor, and C. Hu, "A Folded-Channel MOSFET for Deep-Sub-Tenth Micron Era," IEDM Tech. Digest, p. 1032 (1998).
[88]
P. Oldiges, Q. Lin, K. Petrillo, M. Sanchez, M. Ieong, and M. Hargrove, "Modeling Line Edge Roughness Effects in Sub 100 Nanometer Gate Length Devices," Proceedings of the Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2000, pp. 131-134.
[89]
M. Fischetti and S. Laux, "Monte Carlo Simulation of Transport in Technologically Significant Semiconductors of the Diamond and Zinc-Blende Structures--Part II: Submicrometer MOSFETs," IEEE Trans. Electron Devices 38, 650-660 (1991).
[90]
S. Takagi, M. Takaytanagi-Takagi, and A. Toriumi, "Accurate Characterization of Electron and Hole Inversion-Layer Capacitance and Its Impact on Low Voltage Operation of Scaled MOSFETs," IEDM Tech. Digest, pp. 619-622 (1998).
[91]
P. Solomon and S. Laux, "The Ballistic FET: Design, Capacitance and Speed Limit," IEDM Tech. Digest, p. 95 (2001).
[92]
M. Lundstrom, "On the Mobility Versus Drain Current Relation for a Nanoscale MOSFET," IEEE Electron Device Lett. 22, 293-295 (2001).
[93]
T. Vogelsang and H. R. Hofmann, "Electron Transport in Strained Silicon Layers on Si1-x Ge x Substrates," Appl. Phys. Lett. 63, 186 (1993).
[94]
D. Nayak, J. Woo, J. Park, K. Wang, and K. MacWilliams, "High-Mobility p-Channel Metal-Oxide-Semiconductor Field-Effect Transistors on Strained Si," Appl. Phys. Lett. 62, 2853-2855 (1993).
[95]
J. Welser, J. Hoyt, S. Takagi, and J. Gibbons, "Strain Dependence of the Performance Enhancement in Strained-Si n-MOSFETs," IEDM Tech. Digest, pp. 373-376 (1994).
[96]
M. Fischetti and S. Laux, "Band Structure, Deformation Potentials, and Carrier Mobility in Strained Si, Ge, and SiGe Alloys," J. Appl. Phys. 80, 2234 (1996).
[97]
S. Tiwari, M. Fischetti, P. Mooney, and J. Welser, "Hole Mobility Improvement in Silicon-on-Insulator and Bulk Silicon Transistors Using Local Strain," IEDM Tech. Digest, pp. 939-941 (1997).
[98]
K. Rim, J. Hoyt, and J. Gibbons, "Transconductance Enhancement in Deep Submicron Strained-Si n-MOSFETs," IEDM Tech. Digest, p. 707 (1998).
[99]
T. Mizuno, N. Sugiyama, H. Satake, and S. Takagi, "Advanced SOI-MOSFETs with Strained-Si Channel for High Speed CMOS--Electron/Hole Mobility Enhancement," Symposium on VLSI Technology, Digest of Technical Papers, 2000, p. 210.
[100]
K. Ismail, "Si/SiGe CMOS: Can It Extend the Lifetime of Si," ISSCC Tech. Digest, pp. 116-117 (1997).
[101]
P. Mooney, "Strain Relaxation and Dislocations in SiGe/ Si Structures," Mater. Sci. Eng. R17, 105-146 (1996).
[102]
E. Fitzgerald, Y. Xie, D. Monroe, P. Silverman, J. Kuo, A. Kortan, F. Theil, and B. Weir, "Relaxed Ge x Si1-x Structures for III/V Integration with Si and High Mobility Two-Dimensional Electron Gases in Si," J. Vac. Sci. Technol. B 10, 1087 (1992).
[103]
K. Ismail, F. Nelson, J. Chu, and B. Meyerson, "Electron Transport Properties of Si/SiGe Heterostructures: Measurements and Device Implications," Appl. Phys. Lett. 63, 660-662 (1993).
[104]
K. Rim, S. Koester, M. Hargrove, J. Chu, P. M. Mooney, J. Ott, T. Kanarsky, P. Ronsheim, M. Ieong, A. Grill, and H.-S. P. Wong, "Strained Si NMOSFETs for High Performance CMOS Technology," Symposium on VLSI Technology, Digest of Technical Papers, 2001, p. 59.
[105]
L.-J. Huang, J. Chu, C. Canaperi, C. D'Emic, R. Anderson, S. Koester, and H.-S. P. Wong, "SiGe-on-Insulator Prepared by Wafer Bonding and Layer Transfer for High-Performance Field-Effect Transistors," Appl. Phys. Lett. 78, 1267 (2001).
[106]
L.-J. Huang, J. Chu, S. A. Goma, C. D'Emic, S. J. Koester, D. F. Canaperi, P. M. Mooney, S. A. Cordes, J. L. Speidell, R. M. Anderson, and H.-S. P. Wong, "Carrier Mobility Enhancement in Strained Si-on-Insulator Fabricated by Wafer Bonding," Symposium on VLSI Technology, Digest of Technical Papers, 2001, p. 57.
[107]
Z.-Y. Cheng, M. Currie, C. Leitz, G. Taraschi, E. Fitzgerald, J. Hoyt, and D. Antoniadis, "Electron Mobility Enhancement in Strained-Si n-MOSFETs Fabricated on SiGe-on-Insulator (SGOI) Substrates," IEEE Electron Device Lett. 22, 321-323 (2001).
[108]
T. Mizuno, N. Sugiyama, A. Kurobe, and S. Takagi, "Advanced SOI p-MOSFETs with Strained-Si Channel on SiGe-on-Insulator Substrate Fabricated by SIMOX Technology," IEEE Trans. Electron Devices 48, 1612-1618 (2001).
[109]
T. Tezuka, N. Sugiyama, and S. Takagi, "Fabrication of Strained Si on an Ultrathin SiGe-on-Insulator Substrate with a High-Ge Fraction," Appl. Phys. Lett. 79, 1798-1800 (2001).
[110]
T. Mizuno, N. Sugiyama, T. Tezuka, and S. Takagi, "Novel Fabrication Technique for Relaxed SiGe-on-Insulator Substrates Without Thick SiGe Buffer Structures," Proceedings of the International Conference on Solid State Devices and Materials (SSDM), 2001, pp. 242-243.
[111]
A. R. Powell, S. S. Iyer, and F. K. LeGoues, "New Approach to the Growth of Low Dislocation Relaxed SiGe Material," Appl. Phys. Lett. 64, 1856-1858 (1994).
[112]
S. Iijima, "Helical Microtubules of Graphitic Carbon," Nature 354, 56 (1991).
[113]
S. Iijima and T. Ichihashi, "Single-Shell Carbon Nanotubes of 1-nm Diameter," Nature 363, 603 (1993).
[114]
M. Dresselhaus, G. Dresselhaus, and P. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, New York, 1996.
[115]
P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. Shea, and R. Walkup, "Carbon Nanotubes: Nanomechanics, Manipulation, and Electronic Devices," Appl. Surf. Sci. 141, 201-209 (1999).
[116]
M. Dresselhaus, G. Dresselhaus, and P. Avouris, Eds., Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer-Verlag, New York, 2001.
[117]
S. J. Tans, A. R. M. Verschueren, and C. Dekker, "Room-Temperature Transistor Based on a Single Carbon Nanotube," Nature 393, 49-51 (1998).
[118]
R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, "Single- and Multi-Wall Carbon Nanotube Field-Effect Transistors," Appl. Phys. Lett. 73, 2447-2449 (1998).
[119]
Z. Ren, Z. Huang, J. Xu, J. Wang, P. Bush, M. P. Siegal, and P. Provencio, "Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass," Science 282, 1105-1107 (1998).
[120]
Q. Wang, A. Setlur, J. Lauerhaas, J. Dai, E. Seelig, and R. Chang, "A Nanotube Based Field-Emission Flat Panel Display," Appl. Phys. Lett. 72, 2912-2913 (1998).
[121]
G. Che, B. B. Lakshmi, E. Fisher, and C. R. Martin, "Carbon Nanotube Membranes for Electrochemical Energy Storage and Production," Nature 393, 346-349 (1998).
[122]
H. Dai, J. Hafner, A. Rinzler, D. Colbert, and R. E. Smalley, "Nanotubes as Nanoprobes in Scanning Probe Microscopy," Nature 384, 147-150 (1996).
[123]
S. S. Wong, E. Joselevich, A. Woolley, C. L. Cheung, and C. M. Leiber, "Covalently Functionalized Nanotubes as Nanometre-Sized Probes in Chemistry and Biology," Nature 394, 52-55 (1998).
[124]
H. Dai, N. Franklin, and J. Han, "Exploiting the Properties of Carbon Nanotubes for Nanolithography," Appl. Phys. Lett. 73, 1508-1510 (1998).
[125]
P. L. McEuen, M. Bockrath, D. H. Cobden, Y.-G. Yoon, and S. Louie, "Disorder, Pseudospins, and Backscattering in Carbon Nanotubes," Phys. Rev. Lett. 83, 5098-5101 (1999).
[126]
J. Wildoer, L. Venema, A. Rinzler, R. Smalley, and C. Dekker, "Electronic Structure of Atomically Resolved Carbon Nanotubes," Nature 391, 59-64 (1998).
[127]
V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, "Carbon Nanotube Inter- and Intramolecular Logic Gates," Nano Lett. 1, 453-456 (2001).
[128]
R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. K. Chan, J. Tersoff, and P. Avouris, "Ambipolar Electrical Transport in Semiconducting Single-Wall Carbon Nanotubes," Phys. Rev. Lett. 87, 256805 (2001).
[129]
A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, "Logic Circuits with Carbon Nanotube Transistors," Science, October 4, 2001. Science Online, 10.1126/ science.1065824.
[130]
Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, and S. Iijima, "Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods," Science 285, 1719-1722 (1999).
[131]
R. Martel, H.-S. P. Wong, K. Chan, and P. Avouris, "Carbon Nanotube Field Effect Transistors for Logic Applications," IEDM Tech. Digest (2001).
[132]
J. Appenzeller R. Martel, P. Avouris, H. Stahl, and B. Lengeler, "Optimized Contact Configuration for the Study of Transport Phenomena in Ropes of Single-Wall Carbon Nanotubes," Appl. Phys. Lett. 78, 3313 (2001).
[133]
C. White and T. Todorov, "Carbon Nanotubes as Long Ballistic Conductors," Nature 393, 240-242 (1998).
[134]
A. Bachtold, M. S. Fuhrer, S. Plyasunov, M. Forero, E. H. Anderson, A. Zettl, and P. L. McEuen, "Scanned Probe Microscopy of Electronic Transport in Carbon Nanotubes," Phys. Rev. Lett. 84, 6082-6085 (2000).
[135]
S. Wind, J. Appenzeller, R. Martel, V. Derycke, and P. Avouris, "Vertical Scaling of Single-Wall Carbon Nanotube CMOS Field Effect Transistors Using Top Gate Electrodes," Appl. Phys. Lett., 2002, in press.
[136]
T. Ghani, S. Ahmed, P. Aminzadeh, J. Bielefeld, P. Charvat, C. Chu, M. Harper, P. Jacob, C. Jan, J. Kavalieros, C. Kenyon, R. Nagisetty, P. Packan, J. Sebastian, M. Taylor, J. Tsai, S. Tyagi, S. Yang, and M. Bohr, "100 nm Gate Length High Performance Low Power CMOS Transistor Structure," IEDM Tech. Digest, pp. 415-418 (1999).
[137]
S. Ramo, J. Whinnery, and T. van Duzer, Fields and Waves in Communication Electronics, Wiley, New York, 1965, p. 188.
[138]
C. Zhou, J. Kong, and H. Dai, "Electrical Measurements of Individual Semiconducting Single-Walled Carbon Nanotubes of Various Diameters," Appl. Phys. Lett. 76, 1597-1599 (2000).
[139]
K. Liu, M. Burghard, S. Roth, and P. Bernier, "Conductance Spikes in Single-Walled Carbon Nanotube Field-Effect Transistor," Appl. Phys. Lett. 75, 2494-2496 (1999).
[140]
H. Dai, A. Rinzler, P. Nikolaev, A. Thess, D. Colbert, and R. Smalley, "Single-Wall Nanotubes Produced by Metal-Catalyzed Disproportionation of Carbon Monoxide," Chem. Phys. Lett. 260, 471-475 (1996).
[141]
M. Terrones, N. Grobert, J. Olivares, J. Zhang, H. Terrones, K. Kordatos, W. Hsu, J. Hare, P. Townsend, K. Prassides, A. Cheetham, H. Kroto, and D. Walton, "Controlled Production of Aligned-Nanotube Bundles," Nature 388, 52-55 (1996).
[142]
Z. Ren, Z. Huang, D. Wang, J. Wen, J. Xu, J. Wang, L. Calvet, J. Chen, J. Klemic, and M. Reed, "Growth of a Single Freestanding Multiwall Carbon Nanotube on Each Nanonickel Dot," Appl. Phys. Lett. 75, 1086-1088 (1999).
[143]
L. Sun, J. Mao, Z. Pan, B. Chang, W. Zhou, G. Wang, L. Qian, and S. Xie, "Growth of Straight Nanotubes with a Cobalt-Nickel Catalyst by Chemical Vapor Deposition," Appl. Phys. Lett. 74, 644-646 (1999).
[144]
S. Fan, M. Chapline, N. Franklin, T. Tombler, A. M. Cassell, and H. Dai, "Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties," Science 283, 512-514 (1999).
[145]
J. Li, C. Papadopoulos, J. Xu, and M. Moskovits, "Highly-Ordered Carbon Nanotube Arrays for Electronics Applications," Appl. Phys. Lett. 73, 367-369 (1999).
[146]
J. Mao, L. Sun, L. Qian, Z. Pan, B. Chang, W. Zhou, G. Wang, and S. Xie, "Growth of Carbon Nanotubes on Cobalt Disilicide Precipitates by Chemical Vapor Deposition," Appl. Phys. Lett. 72, 3297-3299 (1998).
[147]
J. Hu, M. Ouyang, P. Yang, and C. Lieber, "Controlled Growth and Electrical Properties of Heterojunctions of Carbon Nanotubes and Silicon Nanowires," Nature 399, 48-51 (1999).
[148]
N. Wang, Z. Tang, G. Li, and J. Chen, "Single-Walled 4A Carbon Nanotube Arrays," Nature 408, 50-51 (2000).
[149]
R. Schlittler, J. Seo, J. Gimzewski, C. Durkan, M. Saifullah, and M. Welland, "Single Crystals of Single-Walled Carbon Nanotubes Formed by Self-Assembly," Science 292, 1136-1139 (2001).
[150]
C. Wann, J. Harrington, R. Mih, S. Biesemans, K. Han, R. Dennard, O. Prigge, C. Lin, R. Mahnkopf, and B. Chen, "CMOS with Active Well Bias for Low-Power and RF/Analog Applications," Symposium on VLSI Technology, Digest of Technical Papers, 2000, pp. 158-159.
[151]
S.-F. Huang, C. Wann, Y.-S. Huang, C.-U. Lin, T. Schafbauer, S.-M. Cheng, Y.-C. Cheng, D. Vietzke, M. Eller, C. Lin, Q. Ye, N. Rovedo, S. Biesemans, P. Nguyen, R. Dennard, and B. Chen, "Scalability and Biasing Strategy for CMOS with Active Well Bias," Symposium on VLSI Technology, Digest of Technical Papers, 2001, pp. 107-108.
[152]
F. H. Gaensslen, V. L. Rideout, E. Walker, and J. Walker, "Very Small MOSFET's for Low-Temperature Operation," IEEE Trans. Electron Devices 24, 218-229 (1977).
[153]
S. Wind, L. Shi, K.-L. Lee, R. Roy, Y. Zhang, E. Sikorski, P. Kozlowski, C. D'Emic, J. J. Bucchignano, H.-J. Wann, R. Viswanathan, J. Cai, and Y. Taur, "Very High Performance 50 nm CMOS at Low Temperature," IEDM Tech. Digest, p. 928 (1999).
[154]
D. Frank, "Design Considerations for CMOS Near the Limits of Silicon," Proceedings of the Workshop on Ultimate Integration of Silicon, January 20-21, 2000.
[155]
E. Jones, M. Ieong, O. Dokumaci, R. Roy, L. Shi, T. Furukawa, R. Miller, and H.-S. P. Wong, "High Performance of Planar Double Gate MOSFETs with Thin Backgate Dielectrics," Proceedings of the Device Research Conference, 2001, pp. 28-29.

Cited By

View all
  • (2024)Design insights into a junctionless nanosheet FET (JL-NSFET) for switching and Analog/RF applicationsMicroelectronics Journal10.1016/j.mejo.2024.106220149:COnline publication date: 1-Jul-2024
  • (2023)Design and Analysis of Low Power FinFET SRAM with Leakage Current Reduction TechniquesWireless Personal Communications: An International Journal10.1007/s11277-023-10475-4131:2(1167-1188)Online publication date: 21-Jun-2023
  • (2021)Effect of Electrons Trapping/De-Trapping at P(VDF-TrFE)/SiO2 Interface in Metal/Ferroelectric/Oxide/Semiconductor Structure With Ultra-Thin SiO2 By AnodizationIEEE Transactions on Nanotechnology10.1109/TNANO.2021.313723620(928-932)Online publication date: 1-Jan-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IBM Journal of Research and Development
IBM Journal of Research and Development  Volume 46, Issue 2-3
March 2002
236 pages

Publisher

IBM Corp.

United States

Publication History

Accepted: 06 March 2002
Published: 01 March 2002
Received: 06 November 2001

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Design insights into a junctionless nanosheet FET (JL-NSFET) for switching and Analog/RF applicationsMicroelectronics Journal10.1016/j.mejo.2024.106220149:COnline publication date: 1-Jul-2024
  • (2023)Design and Analysis of Low Power FinFET SRAM with Leakage Current Reduction TechniquesWireless Personal Communications: An International Journal10.1007/s11277-023-10475-4131:2(1167-1188)Online publication date: 21-Jun-2023
  • (2021)Effect of Electrons Trapping/De-Trapping at P(VDF-TrFE)/SiO2 Interface in Metal/Ferroelectric/Oxide/Semiconductor Structure With Ultra-Thin SiO2 By AnodizationIEEE Transactions on Nanotechnology10.1109/TNANO.2021.313723620(928-932)Online publication date: 1-Jan-2021
  • (2020)Systematic design of CNTFET based OTA and Op amp using g/I techniqueAnalog Integrated Circuits and Signal Processing10.1007/s10470-019-01492-0102:2(293-307)Online publication date: 1-Feb-2020
  • (2019)Technology and Modeling of Nonclassical Transistor DevicesJournal of Electrical and Computer Engineering10.1155/2019/47924612019Online publication date: 1-Jan-2019
  • (2019)Multi-Subband Ensemble Monte Carlo Simulator for Nanodevices in the End of the RoadmapLarge-Scale Scientific Computing10.1007/978-3-030-41032-2_50(438-445)Online publication date: 10-Jun-2019
  • (2017)The End of Moore's LawComputing in Science and Engineering10.1109/MCSE.2017.2919:2(41-50)Online publication date: 1-Mar-2017
  • (2016)Design of quaternary 4-2 and 5-2 compressors for nanotechnologyComputers and Electrical Engineering10.1016/j.compeleceng.2016.11.00656:C(64-74)Online publication date: 1-Nov-2016
  • (2016)A two-dimensional (2D) analytical surface potential and subthreshold current model for the underlap dual-material double-gate (DMDG) FinFETJournal of Computational Electronics10.1007/s10825-016-0899-x15:4(1316-1325)Online publication date: 1-Dec-2016
  • (2014)Bias and geometry optimization of FinFET for RF stability performanceJournal of Computational Electronics10.1007/s10825-013-0507-213:1(250-256)Online publication date: 1-Mar-2014
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media