Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Image-based bidirectional scene reprojection

Published: 12 December 2011 Publication History

Abstract

We introduce a method for increasing the framerate of real-time rendering applications. Whereas many existing temporal upsampling strategies only reuse information from previous frames, our bidirectional technique reconstructs intermediate frames from a pair of consecutive rendered frames. This significantly improves the accuracy and efficiency of data reuse since very few pixels are simultaneously occluded in both frames. We present two versions of this basic algorithm. The first is appropriate for fill-bound scenes as it limits the number of expensive shading calculations, but involves rasterization of scene geometry at each intermediate frame. The second version, our more significant contribution, reduces both shading and geometry computations by performing reprojection using only image-based buffers. It warps and combines the adjacent rendered frames using an efficient iterative search on their stored scene depth and flow. Bidirectional reprojection introduces a small amount of lag. We perform a user study to investigate this lag, and find that its effect is minor. We demonstrate substantial performance improvements (3--4x) for a variety of applications, including vertex-bound and fill-bound scenes, multi-pass effects, and motion blur.

Supplementary Material

Supplemental material. (a150-yang.zip)

References

[1]
Andreev, D. 2010. Real-time framerate up-conversion for video games. In SIGGRAPH 2010 Talks.
[2]
Badt, Jr., S. 1988. Two algorithms for taking advantage of temporal coherence in ray tracing. The Visual Computer, 4(3):123--132.
[3]
Beier, T. and Neely, S. 1992. Feature-based image metamorphosis. SIGGRAPH Comput. Graph., 26(2):35--42.
[4]
Chen, S. E. and Williams, L. 1993. View interpolation for image synthesis. In Proc. ACM SIGGRAPH 93, pages 279--288.
[5]
d'Eon, E. and Luebke, D. 2007. Advanced techniques for realistic real-time skin rendering. In GPU Gems 3, Addison-Wesley.
[6]
Didyk, P., Eisemann, E., Ritschel, T., Myszkowski, K., and Seidel, H.-P. 2010. Perceptually-motivated real-time temporal upsampling of 3D content for high-refresh-rate displays. Computer Graphics Forum, 29(2).
[7]
Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., and Seidel, H.-P. 2010. Adaptive image-space stereo view synthesis. In Vision, Modeling, and Visualization.
[8]
Eisemann, M., De Decker, B., Magnor, M., Bekaert, P., De Aguiar, E., Ahmed, N., Theobalt, C., and Sellent, A. 2008. Floating textures. Computer Graphics Forum, 27(2).
[9]
Fitzgibbon, A., Wexler, Y., and Zisserman, A. 2005. Image-based rendering using image-based priors. International Journal of Computer Vision, 63(2):141--151.
[10]
Herzog, R., Eisemann, E., Myszkowski, K., and Seidel, H.-P. 2010. Spatio-temporal upsampling on the GPU. In Symposium on Interactive 3D Graphics and Games, ACM.
[11]
Mahajan, D., Huang, F.-C., Matusik, W., Ramamoorthi, R., and Belhumeur, P. 2009. Moving gradients: a path-based method for plausible image interpolation. ACM Trans. Graph., 28(3):1--11.
[12]
Mark, W. R., McMillan, L., and Bishop, G. 1997. Postrendering 3D warping. In Proc. Symposium of Interactive 3D Graphics, pages 7--16.
[13]
Mattausch, O., Scherzer, D., and Wimmer, M. 2010. High-quality screen-space ambient occlusion using temporal coherence. Computer Graphics Forum, 29(8):2492--2503.
[14]
McMillan, L. and Bishop, G. 1995. Plenoptic modeling: an image-based rendering system. In Proc. ACM SIGGRAPH 95.
[15]
Nehab, D., Sander, P. V., Lawrence, J., Tatarchuk, N., and Isidoro, J. R. 2007. Accelerating real-time shading with reverse reprojection caching. In Graphics Hardware, pages 25--35.
[16]
Pajak, D., Herzog, R., Eisemann, E., Myszkowski, K., and Seidel, H.-P. 2011. Scalable remote rendering with depth and motion-flow augmented streaming. Comp. Graph. Forum, 30(2).
[17]
Scherzer, D., Jeschke, S., and Wimmer, M. 2007. Pixel-correct shadow maps with temporal reprojection and shadow test confidence. In Eurograph. Symp. Rendering, pages 45--50.
[18]
Scherzer, D., Schwärzler, M., Mattausch, O., and Wimmer, M. 2009. Real-time soft shadows using temporal coherence. LNCS (Proc. ISVC), 5876:13--24.
[19]
Scherzer, D., Yang, L., Mattausch, O., Nehab, D., Sander, P. V., Wimmer, M., and Eisemann, E. 2011. A survey on temporal coherence methods in real-time rendering. In Eurographics State of the Art Reports.
[20]
Seitz, S. M. and Dyer, C. R. 1996. View morphing. In Proc. ACM SIGGRAPH 96, ACM, pages 21--30.
[21]
Sitthi-amorn, P., Lawrence, J., Yang, L., Sander, P. V., and Nehab, D. 2008. An improved shading cache for modern GPUs. In Proc. of Graphics Hardware, pages 95--101.
[22]
Sitthi-amorn, P., Lawrence, J., Yang, L., Sander, P. V., Nehab, D., and Xi, J. 2008. Automated reprojection-based pixel shader optimization. ACM Trans. Graph., 27(5):127.
[23]
Stich, T., Linz, C., Albuquerque, G., and Magnor, M. 2008. View and time interpolation in image space. Computer Graphics Forum (Proc. of Pacific Graphics), 27(7):1781--1787.
[24]
Stich, T., Linz, C., Wallraven, C., Cunningham, D., and Magnor, M. 2008. Perception-motivated interpolation of image sequences. In Proc. Appl. Percept. Graph. Visul., pages 97--106.
[25]
Sullivan, G. J. and Wiegand, T. 2005. Video compression from concepts to the H.264-AVC standard. In Proceedings of the IEEE.
[26]
Vedula, S., Baker, S., and Kanade, T. 2002. Spatio-temporal view interpolation. In Eurograph. Workshop on Rendering.
[27]
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. 2004. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Proc., 13(4):600--612.
[28]
Wiegand, T., Sullivan, G. J., Bj ontegaard, G., and Luthra, A. 2003. Overview of the H.264-AVC video coding standard. IEEE Trans. Circ. Syst. Video Tech., 13.
[29]
Yang, L., Nehab, D., Sander, P. V., Sitthi-amorn, P., Lawrence, J., and Hoppe, H. 2009. Amortized supersampling. ACM Trans. Graph., 28(5):135.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 30, Issue 6
December 2011
678 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2070781
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 December 2011
Published in TOG Volume 30, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. real-time rendering
  2. temporal upsampling

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)46
  • Downloads (Last 6 weeks)6
Reflects downloads up to 03 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Metameric Inpainting for Image WarpingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.321671229:12(5511-5522)Online publication date: Dec-2023
  • (2023)Intelligent Metaverse Scene Content ConstructionIEEE Access10.1109/ACCESS.2023.329787311(76222-76241)Online publication date: 2023
  • (2022)QuadStreamACM Transactions on Graphics10.1145/3550454.355552441:6(1-13)Online publication date: 30-Nov-2022
  • (2021)FreeStyleGANACM Transactions on Graphics10.1145/3478513.348053840:6(1-15)Online publication date: 10-Dec-2021
  • (2021)ExtraNetACM Transactions on Graphics10.1145/3478513.348053140:6(1-16)Online publication date: 10-Dec-2021
  • (2021)Temporally Adaptive Shading Reuse for Real-Time Rendering and Virtual RealityACM Transactions on Graphics10.1145/344679040:2(1-14)Online publication date: 27-Apr-2021
  • (2021)SnakeBinning: Efficient Temporally Coherent Triangle Packing for Shading StreamingComputer Graphics Forum10.1111/cgf.14264840:2(475-488)Online publication date: 4-Jun-2021
  • (2020)Time‐Warped Foveated Rendering for Virtual Reality HeadsetsComputer Graphics Forum10.1111/cgf.1417640:1(110-123)Online publication date: 26-Oct-2020
  • (2019)Intermediated Reality: A Framework for Communication Through Tele-PuppetryFrontiers in Robotics and AI10.3389/frobt.2019.000606Online publication date: 23-Jul-2019
  • (2019)Document rectification and illumination correction using a patch-based CNNACM Transactions on Graphics10.1145/3355089.335656338:6(1-11)Online publication date: 8-Nov-2019
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media