Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Fast Complementary Dynamics via Skinning Eigenmodes

Published: 26 July 2023 Publication History

Abstract

We propose a reduced-space elastodynamic solver that is well suited for augmenting rigged character animations with secondary motion. At the core of our method is a novel deformation subspace based on Linear Blend Skinning that overcomes many of the shortcomings prior subspace methods face. Our skinning subspace is parameterized entirely by a set of scalar weights, which we can obtain through a small, material-aware and rig-sensitive generalized eigenvalue problem. The resulting subspace can easily capture rotational motion and guarantees that the resulting simulation is rotation equivariant. We further propose a simple local-global solver for linear co-rotational elasticity and propose a clustering method to aggregate per-tetrahedra nonlinear energetic quantities. The result is a compact simulation that is fully decoupled from the complexity of the mesh.

References

[1]
Adobe Systems Inc. 2023. Mixamo. https://mixamo.com.
[2]
Steven S. An, Theodore Kim, and Doug L. James. 2008. Optimizing Cubature for Efficient Integration of Subspace Deformations. ACM Trans. Graph. 27, 5, Article 165 (dec 2008), 10 pages.
[3]
David Arthur and Sergei Vassilvitskii. 2007. k-means++: the advantages of careful seeding. In SODA '07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms (New Orleans, Louisiana). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1027--1035.
[4]
David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '98). Association for Computing Machinery, New York, NY, USA, 43--54.
[5]
Jernej Barbič and Doug L. James. 2005. Real-Time Subspace Integration for St. Venant-Kirchhoff Deformable Models. ACM Trans. Graph. 24, 3 (jul 2005), 982--990.
[6]
Jernej Barbič and Yili Zhao. 2011. Real-time Large-deformation Substructuring. ACM Trans. on Graphics (SIGGRAPH 2011) 30, 4 (2011), 91:1--91:7.
[7]
Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (July 2014), 11 pages.
[8]
Christopher Brandt, Elmar Eisemann, and Klaus Hildebrandt. 2018. Hyper-Reduced Projective Dynamics. ACM Trans. Graph. 37, 4, Article 80 (jul 2018), 13 pages.
[9]
Christopher Brandt and Klaus Hildebrandt. 2017. Compressed vibration modes of elastic bodies. Computer Aided Geometric Design 52--53 (03 2017).
[10]
Christopher Brandt, Leonardo Scandolo, Elmar Eisemann, and Klaus Hildebrandt. 2019. The Reduced Immersed Method for Real-Time Fluid-Elastic Solid Interaction and Contact Simulation. ACM Trans. Graph. 38, 6, Article 191 (nov 2019), 16 pages.
[11]
Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. 2010. A Simple Geometric Model for Elastic Deformations. 29, 4, Article 38 (jul 2010), 6 pages.
[12]
Min Gyu Choi and Hyeong-Seok Ko. 2005. Modal warping: real-time simulation of large rotational deformation and manipulation. IEEE Transactions on Visualization and Computer Graphics 11, 1 (2005), 91--101.
[13]
Simon Duenser, Bernhard Thomaszewski, Roi Poranne, and Stelian Coros. 2022. Nonlinear Compliant Modes for Large-Deformation Analysis of Flexible Structures. ACM Trans. Graph. 42, 2, Article 21 (nov 2022), 11 pages.
[14]
François Faure, Benjamin Gilles, Guillaume Bousquet, and Dinesh K. Pai. 2011. Sparse Meshless Models of Complex Deformable Solids. ACM Trans. Graph. 30, 4, Article 73 (jul 2011), 10 pages.
[15]
Benjamin Gilles, Guillaume Bousquet, Francois Faure, and Dinesh K. Pai. 2011. Frame-Based Elastic Models. ACM Trans. Graph. 30, 2, Article 15 (apr 2011), 12 pages.
[16]
Gene H. Golub. 1973. Some Modified Matrix Eigenvalue Problems. SIAM Rev. 15, 2 (1973), 318--334. arXiv:https://doi.org/10.1137/1015032
[17]
Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski, Robert Sumner, Stelian Coros, and Markus Gross. 2012. Rig-Space Physics. ACM Trans. Graph. 31, 4, Article 72 (jul 2012), 8 pages.
[18]
Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W Sumner, and Markus Gross. 2013. Efficient simulation of secondary motion in rig-space. In Proceedings of the 12th ACM SIGGRAPH/eurographics symposium on computer animation. 165--171.
[19]
David Harmon and Denis Zorin. 2013. Subspace Integration with Local Deformations. ACM Trans. Graph. 32, 4, Article 107 (jul 2013), 10 pages.
[20]
Klaus Hildebrandt, Christian Schulz, Christoph Von Tycowicz, and Konrad Polthier. 2011. Interactive Surface Modeling Using Modal Analysis. ACM Trans. Graph. 30, 5, Article 119 (oct 2011), 11 pages.
[21]
Kevin Houston. 2017. Sequentially-Defined Compressed Modes via ADMM. In Proceedings of the Symposium on Geometry Processing: Posters (London, United Kingdom) (SGP '17). Eurographics Association, Goslar, DEU, 1--2.
[22]
Jin Huang, Yiying Tong, Kun Zhou, Hujun Bao, and Mathieu Desbrun. 2011. Interactive Shape Interpolation through Controllable Dynamic Deformation. IEEE Transactions on Visualization and Computer Graphics 17, 7 (2011), 983--992.
[23]
Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, and Olga Sorkine. 2012. Fast Automatic Skinning Transformations. ACM Trans. Graph. 31, 4 (2012), to appear.
[24]
Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga Sorkine. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4 (2011), 78.
[25]
Doug James and Dinesh Pai. 1999. ARTDEFO: accurate real time deformable objects. Proc. of ACM SIGGRAPH 72, 65--72.
[26]
Doug L. James and Dinesh K. Pai. 2002. DyRT: Dynamic Response Textures for Real Time Deformation Simulation with Graphics Hardware. ACM Trans. Graph. 21, 3 (jul 2002), 582--585.
[27]
Ladislav Kavan, Steven Collins, Jiri Zara, and Carol O'Sullivan. 2008. Geometric Skinning with Approximate Dual Quaternion Blending. ACM Trans. Graph. 27, 4 (2008), 105.
[28]
Theodore Kim and David Eberle. 2020. Dynamic Deformables: Implementation and Production Practicalities (SIGGRAPH '20). Association for Computing Machinery, New York, NY, USA, Article 23, 182 pages.
[29]
Theodore Kim and Doug L. James. 2011. Physics-Based Character Skinning Using MultiDomain Subspace Deformations (SCA '11). Association for Computing Machinery, New York, NY, USA, 63--72.
[30]
Paul G. Kry, Doug L. James, and Dinesh K. Pai. 2002. EigenSkin: Real Time Large Deformation Character Skinning in Hardware. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Antonio, Texas) (SCA '02). Association for Computing Machinery, New York, NY, USA, 153--159.
[31]
Lei Lan, Ran Luo, Marco Fratarcangeli, Weiwei Xu, Huamin Wang, Xiaohu Guo, Junfeng Yao, and Yin Yang. 2020. Medial Elastics: Efficient and Collision-Ready Deformation via Medial Axis Transform. ACM Trans. Graph. 39, 3, Article 20 (apr 2020), 17 pages.
[32]
Lei Lan, Yin Yang, Danny Kaufman, Junfeng Yao, Minchen Li, and Chenfanfu Jiang. 2021. Medial IPC: Accelerated Incremental Potential Contact with Medial Elastics. ACM Trans. Graph. 40, 4, Article 158 (jul 2021), 16 pages.
[33]
Torsten Langer and Hans-Peter Seidel. 2008. Higher Order Barycentric Coordinates. Comput. Graph. Forum 27, 2 (2008), 459--466.
[34]
Hsueh-Ti Derek Liu, Jiayi Eris Zhang, Mirela Ben-Chen, and Alec Jacobson. 2021. Surface Multigrid via Intrinsic Prolongation. ACM Trans. Graph. 40, 4, Article 80 (jul 2021), 13 pages.
[35]
Tiantian Liu, Adam W. Bargteil, James F. O'Brien, and Ladislav Kavan. 2013. Fast Simulation of Mass-Spring Systems. ACM Transactions on Graphics 32, 6 (Nov. 2013), 209:1--7. http://cg.cis.upenn.edu/publications/Liu-FMS Proceedings of ACM SIGGRAPH Asia 2013, Hong Kong.
[36]
Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials. ACM Trans. Graph. 36, 4, Article 116a (jul 2017), 16 pages.
[37]
Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja, Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee, et al. 2019. Mediapipe: A framework for building perception pipelines. arXiv preprint arXiv:1906.08172 (2019).
[38]
Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph Teran, and Eftychios Sifakis. 2011. Efficient Elasticity for Character Skinning with Contact and Collisions. In ACM SIGGRAPH 2011 Papers (Vancouver, British Columbia, Canada) (SIGGRAPH '11). Association for Computing Machinery, New York, NY, USA, Article 37, 12 pages.
[39]
Simone Melzi, Emanuele Rodolà, Umberto Castellani, and Michael M Bronstein. 2018. Localized manifold harmonics for spectral shape analysis. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 20--34.
[40]
Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position Based Dynamics. J. Vis. Comun. Image Represent. 18, 2 (apr 2007), 109--118.
[41]
Ahmad Nasikun, Christopher Brandt, and Klaus Hildebrandt. 2018. Fast Approximation of Laplace-Beltrami Eigenproblems. Computer Graphics Forum 37 (08 2018), 121--134.
[42]
A. Pentland and J. Williams. 1989. Good Vibrations: Modal Dynamics for Graphics and Animation. SIGGRAPH Comput. Graph. 23, 3 (jul 1989), 207--214.
[43]
Damien Rohmer, Marco Tarini, Niranjan Kalyanasundaram, Faezeh Moshfeghifar, MariePaule Cani, and Victor Zordan. 2021. Velocity Skinning for Real-time Stylized Skeletal Animation. In Computer Graphics Forum, Vol. 40. Wiley Online Library, 549--561.
[44]
Silvia Sellán, Jack Luong, Leticia Mattos Da Silva, Aravind Ramakrishnan, Yuchuan Yang, and Alec Jacobson. 2021. Breaking Good: Fracture Modes for Realtime Destruction. CoRR abs/2111.05249 (2021). arXiv:2111.05249 https://arxiv.org/abs/2111.05249
[45]
Olga Sorkine and Marc Alexa. 2007. As-Rigid-As-Possible Surface Modeling. In Geometry Processing, Alexander Belyaev and Michael Garland (Eds.). The Eurographics Association.
[46]
Ryusuke Sugimoto, Christopher Batty, and Toshiya Hachisuka. 2022. Surface-Only Dynamic Deformables using a Boundary Element Method. Computer Graphics Forum (2022).
[47]
Yun Teng, Miguel A. Otaduy, and Theodore Kim. 2014. Simulating Articulated Subspace Self-Contact. ACM Trans. Graph. 33, 4, Article 106 (jul 2014), 9 pages.
[48]
Demetri Terzopoulos and Andrew Witkin. 1988. Physically Based Models with Rigid and Deformable Components. IEEE Comput. Graph. Appl. 8, 6 (nov 1988), 41--51.
[49]
Ty Trusty, Danny M. Kaufman, and David I. W. Levin. 2022. Mixed Variational Finite Elements for Implicit, General-Purpose Simulation of Deformables. CoRR abs/2202.00183 (2022). arXiv:2202.00183 https://arxiv.org/abs/2202.00183
[50]
Christoph von Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt. 2013. An Efficient Construction of Reduced Deformable Objects. ACM Trans. Graph. 32, 6, Article 213 (nov 2013), 10 pages.
[51]
Yu Wang, Alec Jacobson, Jernej Barbic, and Ladislav Kavan. 2015. Linear Subspace Design for Real-Time Shape Deformation. ACM Trans. Graph. 34, 4 (2015).
[52]
Jiayi Eris Zhang, Seungbae Bang, David I.W. Levin, and Alec Jacobson. 2020. Complementary Dynamics. ACM Transactions on Graphics (2020).
[53]
Mianlun Zheng, Yi Zhou, Duygu Ceylan, and Jernej Barbic. 2021. A deep emulator for secondary motion of 3d characters. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5932--5940.

Cited By

View all

Index Terms

  1. Fast Complementary Dynamics via Skinning Eigenmodes

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 42, Issue 4
    August 2023
    1912 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3609020
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 26 July 2023
    Published in TOG Volume 42, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. linear blend skinning
    2. secondary motion
    3. complementary dynamics

    Qualifiers

    • Research-article

    Funding Sources

    • NSERC
    • NFRFE

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)175
    • Downloads (Last 6 weeks)9
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)SMEAR: Stylized Motion Exaggeration with ARt-directionACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657457(1-11)Online publication date: 13-Jul-2024
    • (2024)Homotopy Based Skinning of SpheresComputer-Aided Design10.1016/j.cad.2024.103686170:COnline publication date: 2-Jul-2024
    • (2024)Temporal Residual Jacobians for Rig-Free Motion TransferComputer Vision – ECCV 202410.1007/978-3-031-73636-0_6(93-109)Online publication date: 5-Nov-2024
    • (2024)Multi‐scale edge aggregation mesh‐graph‐network for character secondary motionComputer Animation and Virtual Worlds10.1002/cav.224135:3Online publication date: 17-May-2024
    • (2023)Subspace Mixed Finite Elements for Real-Time Heterogeneous ElastodynamicsSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618220(1-10)Online publication date: 10-Dec-2023
    • (2023)LiCROM: Linear-Subspace Continuous Reduced Order Modeling with Neural FieldsSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618158(1-12)Online publication date: 10-Dec-2023

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media