Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1576702.1576718acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Computing cylindrical algebraic decomposition via triangular decomposition

Published: 28 July 2009 Publication History

Abstract

Cylindrical algebraic decomposition is one of the most important tools for computing with semi-algebraic sets, while triangular decomposition is among the most important approaches for manipulating constructible sets. In this paper, for an arbitrary finite set F ⊂ [y1,...,yn] we apply comprehensive triangular decomposition in order to obtain an F-invariant cylindrical decomposition of the n-dimensional complex space, from which we extract an F-invariant cylindrical algebraic decomposition of the n-dimensional real space. We report on an implementation of this new approach for constructing cylindrical algebraic decompositions.

References

[1]
D. S. Arnon, G. E. Collins, and S. McCallum. Cylindrical algebraic decomposition I: the basic algorithm. SIAM J. Comput., 13(4):865--877, 1984.
[2]
P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets. J. Symb. Comp., 28(1-2):105--124, 1999.
[3]
S. Basu, R. Pollack, and M. F. Roy. Algorithms in real algebraic geometry, volume 10 of Algorithms and Computations in Mathematics. Springer-Verlag, 2006.
[4]
F. Boulier, F. Lemaire, and M. Moreno Maza. Well known theorems on triangular systems and the D5 principle. In Proc. of Transgressive Computing 2006, Granada, Spain, 2006.
[5]
C. W. Brown. Improved projection for cylindrical algebraic decomposition. J. Symb. Comput., 32(5):447--465, 2001.
[6]
C. W. Brown. Simple cad construction and its applications. J. Symb. Comput., 31(5):521--547, 2001.
[7]
C. W. Brown and J. H. Davenport. The complexity of quantifier elimination and cylinrical algebraic decomposition. In Proc. ISSAC'07, pages 54--60, 2007.
[8]
B. Caviness and J. Johnson, editors. Quantifier Elimination and Cylindical Algebraic Decomposition, Texts and Mongraphs in Symbolic Computation. Springer, 1998.
[9]
C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, and W. Pan. Comprehensive Triangular Decomposition, volume 4770 of LNCS, pages 73--101. Springer, 2007.
[10]
J. S. Cheng, X. S. Gao, and C. K. Yap. Complete numerical isolation of real zeros in zero-dimensional triangular systems. In Proc. ISSAC'07, pages 92--99, 2007.
[11]
G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. Springer Lecture Notes in Computer Science, 33:515--532, 1975.
[12]
G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition. Journal of Symbolic Computation, 12(3):299--328, 1991.
[13]
G. E. Collins, J. R. Johnson, and W. Krandick. Interval arithmetic in cylindrical algebraic decomposition. J. Symb. Comput., 34(2):145--157, 2002.
[14]
X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. Lifting techniques for triangular decompositions. In ISSAC'05, pages 108--115, 2005.
[15]
A. Dolzmann, A. Seidl, and T. Sturm. Efficient projection orders for cad. In Proc. ISSAC '04, pages 111--118. ACM, 2004.
[16]
A. Dolzmann, T. Sturm, and V. Weispfenning. Real quantifier elimination in practice. In Algorithmic Algebra and Number Theory, pages 221--247, 1998.
[17]
H. Hong. An improvement of the projection operator in cylindrical algebraic decomposition. In Proc. ISSAC '90, pages 261--264. ACM, 1990.
[18]
H. Hong. Simple solution formula construction in cylindrical algebraic decomposition based quantifier elimination. In ISSAC '92, pages 177--188. ACM, 1992.
[19]
É. Hubert. Notes on triangular sets and triangulation-decomposition algorithms. I. Polynomial systems. In Symbolic and numerical scientific computation (Hagenberg, 2001), volume 2630 of LNCS, pages 1--39. Springer, 2003.
[20]
F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library. In Ilias S. Kotsireas, editor, Maple Conference 2005, pages 355--368, 2005.
[21]
X. Li, M. Moreno Maza, and W. Pan. Computations modulo regular chains. In Proc. ISSAC'09, ACM, 2009.
[22]
X. Li, M. Moreno Maza, R. Rasheed, and É. Schost. The Modpn library: Bringing fast polynomial arithmetic into Maple. In Proc. MICA'08, 2008.
[23]
X. Li, M. Moreno Maza, and É. Schost. Fast arithmetic for triangular sets: From theory to practice. In Proc. ISSAC'07, pages 269--276. ACM, 2007.
[24]
S. McCallum. An improved projection operation for cylindrical algebraic decomposition of 3-dimensional space. J. Symb. Comput., 5(1-2):141--161, 1988.
[25]
S. McCallum. Solving polynomial strict inequalities using cylindrical algebraic decomposition. The Computer Journal, 36(5):432--438, 1993.
[26]
M. Moreno Maza. On triangular decompositions of algebraic varieties. Technical Report TR 4/99, NAG Ltd, Oxford, UK, 1999. Presented at the MEGA-2000 Conference, Bath, England.
[27]
A. Strzebo'nski. Solving systems of strict polynomial inequalities. J. Symb. Comput., 29(3):471--480, 2000.
[28]
D. M. Wang. Elimination Methods. Springer, New York, 2000.
[29]
W. T. Wu. A zero structure theorem for polynomial equations solving. MM Research Preprints, 1:2--12, 1987.
[30]
B. Xia and L. Yang. An algorithm for isolating the real solutions of semi-algebraic systems. J. Symb. Comput., 34(5):461--477, 2002.
[31]
B. Xia and T. Zhang. Real solution isolation using interval arithmetic. Comput. Math. Appl., 52(6-7):853--860, 2006.
[32]
L. Yang, X. Hou, and B. Xia. A complete algorithm for automated discovering of a class of inequality--type theorems. Science in China, Series F, 44(6):33--49, 2001.

Cited By

View all
  • (2024)Explainable AI Insights for Symbolic Computation: A case study on selecting the variable ordering for cylindrical algebraic decompositionJournal of Symbolic Computation10.1016/j.jsc.2023.102276123(102276)Online publication date: Jul-2024
  • (2023)Lazard-style CAD and Equational ConstraintsProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597090(218-226)Online publication date: 24-Jul-2023
  • (2022)The DEWCAD projectACM Communications in Computer Algebra10.1145/3511528.351153855:3(107-111)Online publication date: 12-Jan-2022
  • Show More Cited By

Index Terms

  1. Computing cylindrical algebraic decomposition via triangular decomposition

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ISSAC '09: Proceedings of the 2009 international symposium on Symbolic and algebraic computation
    July 2009
    402 pages
    ISBN:9781605586090
    DOI:10.1145/1576702
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 28 July 2009

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. cad
    2. regular chain
    3. triangular decomposition

    Qualifiers

    • Research-article

    Conference

    ISSAC '09
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)8
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 17 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Explainable AI Insights for Symbolic Computation: A case study on selecting the variable ordering for cylindrical algebraic decompositionJournal of Symbolic Computation10.1016/j.jsc.2023.102276123(102276)Online publication date: Jul-2024
    • (2023)Lazard-style CAD and Equational ConstraintsProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597090(218-226)Online publication date: 24-Jul-2023
    • (2022)The DEWCAD projectACM Communications in Computer Algebra10.1145/3511528.351153855:3(107-111)Online publication date: 12-Jan-2022
    • (2022)New Heuristic to Choose a Cylindrical Algebraic Decomposition Variable Ordering Motivated by Complexity AnalysisComputer Algebra in Scientific Computing10.1007/978-3-031-14788-3_17(300-317)Online publication date: 11-Aug-2022
    • (2021)Implementing arithmetic over algebraic numbers A tutorial for Lazard's lifting scheme in CAD2021 23rd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)10.1109/SYNASC54541.2021.00013(4-10)Online publication date: Dec-2021
    • (2020)Cylindrical algebraic decomposition with equational constraintsJournal of Symbolic Computation10.1016/j.jsc.2019.07.019100:C(38-71)Online publication date: 1-Sep-2020
    • (2020)A Machine Learning Based Software Pipeline to Pick the Variable Ordering for Algorithms with Polynomial InputsMathematical Software – ICMS 202010.1007/978-3-030-52200-1_30(302-311)Online publication date: 8-Jul-2020
    • (2020)Chordality Preserving Incremental Triangular Decomposition and Its ImplementationMathematical Software – ICMS 202010.1007/978-3-030-52200-1_3(27-36)Online publication date: 8-Jul-2020
    • (2020)Variable Ordering Selection for Cylindrical Algebraic Decomposition with Artificial Neural NetworksMathematical Software – ICMS 202010.1007/978-3-030-52200-1_28(281-291)Online publication date: 8-Jul-2020
    • (2020)Improved Cross-Validation for Classifiers that Make Algorithmic Choices to Minimise Runtime Without Compromising Output CorrectnessMathematical Aspects of Computer and Information Sciences10.1007/978-3-030-43120-4_27(341-356)Online publication date: 18-Mar-2020
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media