Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Fabricating translucent materials using continuous pigment mixtures

Published: 21 July 2013 Publication History

Abstract

We present a method for practical physical reproduction and design of homogeneous materials with desired subsurface scattering. Our process uses a collection of different pigments that can be suspended in a clear base material. Our goal is to determine pigment concentrations that best reproduce the appearance and subsurface scattering of a given target material. In order to achieve this task we first fabricate a collection of material samples composed of known mixtures of the available pigments with the base material. We then acquire their reflectance profiles using a custom-built measurement device. We use the same device to measure the reflectance profile of a target material. Based on the database of mappings from pigment concentrations to reflectance profiles, we use an optimization process to compute the concentration of pigments to best replicate the target material appearance. We demonstrate the practicality of our method by reproducing a variety of different translucent materials. We also present a tool that allows the user to explore the range of achievable appearances for a given set of pigments.

Supplementary Material

ZIP File (a146-papas.zip)
Supplemental material.

References

[1]
dEon, E., and Irving, G. 2011. A quantized-diffusion model for rendering translucent materials. ACM Transactions on Graphics 30, 4, 56:1--56:14.
[2]
Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Transactions on Graphics 29, 4 (July), 62:1--62:10.
[3]
Donner, C., Lawrence, J., Ramamoorthi, R., Hachisuka, T., Jensen, H. W., and Nayar, S. 2009. An empirical bssrdf model. ACM Transactions on Graphics 28, 3 (July), 30:1--30:10.
[4]
Dorsey, J., Rushmeier, H., and Sillion, F. 2008. Digital Modeling of Material Appearance. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
[5]
Fuchs, M., Raskar, R., Seidel, H.-P., and Lensch, H. P. A. 2008. Towards passive 6d reflectance field displays. ACM Transactions on Graphics 27, 3 (Aug.), 58:1--58:8.
[6]
Hasan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Transactions on Graphics 29, 4 (July), 61:1--61:10.
[7]
Hawkins, T., Einarsson, P., and Debevec, P. 2005. Acquisition of time-varying participating media. ACM Transactions on Graphics 24, 3 (Aug.), 812--815.
[8]
Hullin, M. B., Lensch, H. P. A., Raskar, R., Seidel, H.-P., and Ihrke, I. 2011. Dynamic display of BRDFs. In Computer Graphics Forum (Proc. EUROGRAPHICS), 475--483.
[9]
Jakob, W., 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.
[10]
Jensen, H. W., and Buhler, J. 2002. A rapid hierarchical rendering technique for translucent materials. ACM Transactions on Graphics 21, 3 (July), 576--581.
[11]
Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 511--518.
[12]
Kelly, R. J., 1987. Process for matching color of paint to a colored surface. U. S. Patent Number 4692481. Filed Sep 27, 1984.
[13]
Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P. A., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM Transactions on Graphics 28, 5 (Dec.), 128:1--128:9.
[14]
Mitsunaga, T., and Nayar, S. 1999. Radiometric self calibration. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, 374--380.
[15]
Munoz, A., Echevarria, J. I., Seron, F., Lopez-Moreno, J., Glencross, M., and Gutierrez, D. 2011. BSSRDF estimation from single images. Computer Graphics Forum 30, 455--464.
[16]
Narasimhan, S. G., Gupta, M., Donner, C., Ramamoorthi, R., Nayar, S. K., and Jensen, H. W. 2006. Acquiring scattering properties of participating media by dilution. ACM Transactions on Graphics 25, 3 (July), 1003--1012.
[17]
Park, J.-I., Lee, M.-H., Grossberg, M. D., and Nayar, S. K. 2007. Multispectral imaging using multiplexed illumination. In ICCV, 1--8.
[18]
Sherman, C. J., and Simone, K. S., 1989. Process for manufacturing paints. U.S. Patent Number 4887217. Filed Jan 4, 1985.
[19]
Song, Y., Tong, X., Pellacini, F., and Peers, P. 2009. Subedit: a representation for editing measured heterogeneous subsurface scattering. ACM Trans. Graph. 28, 3 (July), 31:1--31:10.
[20]
Wang, L., Jacques, S. L., and Zheng, L. 1995. MCML--Monte Carlo modeling of light transport in multi-layered tissues. Computer methods and programs in biomedicine 47, 2 (July), 131--146.
[21]
Weyrich, T., Matusik, W., Pfister, H., Bickel, B., Donner, C., Tu, C., McAndless, J., Lee, J., Ngan, A., Jensen, H. W., and Gross, M. 2006. Analysis of human faces using a measurement-based skin reflectance model. ACM Transactions on Graphics 25, 3 (July), 1013--1024.
[22]
Weyrich, T., Lawrence, J., Lensch, H. P., Rusinkiewicz, S., and Zickler, T. 2009. Principles of appearance acquisition and representation. Foundations and Trends in Computer Graphics and Vision 4, 2, 75--191.
[23]
Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Transactions on Graphics 28, 3 (July), 32:1--32:6.
[24]
Xu, K., Gao, Y., Li, Y., Ju, T., and Hu, S.-M. 2007. Real-time homogenous translucent material editing. Computer Graphics Forum 26, 3 (Sept.), 545--552.

Cited By

View all
  • (2023)Perceptual Translucency in 3D Printing Using Surface TextureJournal of Imaging10.3390/jimaging90501059:5(105)Online publication date: 22-May-2023
  • (2023)Skin-Screen: A Computational Fabrication Framework for Color TattoosACM Transactions on Graphics10.1145/359243242:4(1-13)Online publication date: 26-Jul-2023
  • (2023)Meso-Facets for Goniochromatic 3D PrintingACM Transactions on Graphics10.1145/359213742:4(1-12)Online publication date: 26-Jul-2023
  • Show More Cited By

Index Terms

  1. Fabricating translucent materials using continuous pigment mixtures

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 32, Issue 4
    July 2013
    1215 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2461912
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 21 July 2013
    Published in TOG Volume 32, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. fabrication
    2. material design
    3. subsurface scattering

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)25
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 09 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Perceptual Translucency in 3D Printing Using Surface TextureJournal of Imaging10.3390/jimaging90501059:5(105)Online publication date: 22-May-2023
    • (2023)Skin-Screen: A Computational Fabrication Framework for Color TattoosACM Transactions on Graphics10.1145/359243242:4(1-13)Online publication date: 26-Jul-2023
    • (2023)Meso-Facets for Goniochromatic 3D PrintingACM Transactions on Graphics10.1145/359213742:4(1-12)Online publication date: 26-Jul-2023
    • (2023)State of the Art in Efficient Translucent Material Rendering with BSSRDFComputer Graphics Forum10.1111/cgf.1499843:1Online publication date: 22-Dec-2023
    • (2022)Quantification of Visual Texture and Presentation of Intermediate Visual Texture by Spatial MixingMicromachines10.3390/mi1302025513:2(255)Online publication date: 2-Feb-2022
    • (2022)Fabrication of a Human Skin Mockup with a Multilayered Concentration Map of Pigment Components Using a UV PrinterJournal of Imaging10.3390/jimaging80300738:3(73)Online publication date: 15-Mar-2022
    • (2022)Towards machine learning for heterogeneous inverse scattering in 3D microscopyOptics Express10.1364/OE.44707530:6(9854)Online publication date: 10-Mar-2022
    • (2022)Direct acquisition of volumetric scattering phase function using speckle correlationsSIGGRAPH Asia 2022 Conference Papers10.1145/3550469.3555379(1-9)Online publication date: 29-Nov-2022
    • (2022)Affordable Spectral Measurements of Translucent MaterialsACM Transactions on Graphics10.1145/3550454.355549941:6(1-13)Online publication date: 30-Nov-2022
    • (2022)Reconstructing Translucent Objects using Differentiable RenderingACM SIGGRAPH 2022 Conference Proceedings10.1145/3528233.3530714(1-10)Online publication date: 27-Jul-2022
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media