Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Nonuniform ACC Circuit Lower Bounds

Published: 01 January 2014 Publication History

Abstract

The class ACC consists of circuit families with constant depth over unbounded fan-in AND, OR, NOT, and MODm gates, where m > 1 is an arbitrary constant. We prove the following.
---NEXP, the class of languages accepted in nondeterministic exponential time, does not have nonuniform ACC circuits of polynomial size. The size lower bound can be slightly strengthened to quasipolynomials and other less natural functions.
---ENP, the class of languages recognized in 2O(n) time with an NP oracle, doesn’t have nonuniform ACC circuits of 2no(1) size. The lower bound gives an exponential size-depth tradeoff: for every d, m there is a δ > 0 such that ENP doesn’t have depth-d ACC circuits of size 2nδ with MODm gates.
Previously, it was not known whether EXPNP had depth-3 polynomial-size circuits made out of only MOD6 gates. The high-level strategy is to design faster algorithms for the circuit satisfiability problem over ACC circuits, then prove that such algorithms entail these lower bounds. The algorithms combine known properties of ACC with fast rectangular matrix multiplication and dynamic programming, while the second step requires a strengthening of the author’s prior work.

References

[1]
Scott Aaronson and Avi Wigderson. 2009. Algebrization: A new barrier in complexity theory. ACM Trans. Comput. Theory 1, 1.
[2]
Manindra Agrawal, Eric Allender, and Samir Datta. 2000. On TC0, AC0, and arithmetic circuits. J. Comput. Syst. Sci. 60, 2, 395--421.
[3]
Miklos Ajtai. 1983. Σ11-formulae on finite structures. Ann. Pure Appl. Logic 24, 1--48.
[4]
Eric Allender. 1989. A note on the power of threshold circuits. In Proceedings of FOCS. 580--584.
[5]
Eric Allender. 1999. The permanent requires large uniform threshold circuits. Chicago J. Theoret. Comput. Sci.
[6]
Eric Allender and Vivek Gore. 1991. On strong separations from AC0. Fund. Computat. Theory 8.
[7]
Noga Alon and Ravi B. Boppana. 1987. The monotone circuit complexity of Boolean functions. Combinatorica 7, 1, 1--22.
[8]
Sanjeev Arora and Boaz Barak. 2009. Computational Complexity - A Modern Approach. Cambridge University Press.
[9]
László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. 1993. BPP has subexponential time simulations unless EXPTIME has publishable proofs. Computat. Complex. 3, 4, 307--318.
[10]
Theodore Baker, John Gill, and Robert Solovay. 1975. Relativizations of the P =? NP question. SIAM J. Comput. 4, 4, 431--442.
[11]
David A. Mix Barrington. 1989. Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. J. Comput. Syst. Sci. 38, 1, 150--164.
[12]
David A. Mix Barrington and Howard Straubing. 1995. Superlinear lower bounds for bounded-width branching programs. J. Comput. Syst. Sci. 50, 3, 374--381.
[13]
David A. Mix Barrington and Denis Thérien. 1988. Finite monoids and the fine structure of NC1. J. ACM 35, 4, 941--952.
[14]
David A. Mix Barrington, Howard Straubing, and Denis Thérien. 1990. Non-uniform automata over groups. Inf. Comput. 89, 2, 109--132.
[15]
Richard Beigel and Jun Tarui. 1994. On ACC. Computat. Complex., 350--366.
[16]
Dario Bini and Victor Pan. 1994. Polynomial and Matrix Computations. Birkhauser.
[17]
Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. 2009. Set partitioning via inclusion-exclusion. SIAM J. Comput. 39, 2, 546--563.
[18]
Harry Buhrman, Lance Fortnow, and Thomas Thierauf. 1998. Nonrelativizing separations. In Proceedings of 13th Annual IEEE Conference on Computational Complexity. 8--12.
[19]
Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. 2006. A duality between clause width and clause density for SAT. In Proceedings of the IEEE Conference on Computational Complexity. 252--260.
[20]
Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. 2009. The complexity of satisfiability of small depth circuits. In Proceedings of the International Workshop on Parameterized and Exact Complexity (IWPEC). 75--85.
[21]
John F. Canny, Erich Kaltofen, and Lakshman Yagati. 1989. Solving systems of non-linear equations faster. In Proceedings of the ACM-SIGSAM International Symposium on Symbolic and Algebraic Computation. 121--128.
[22]
Hervé Caussinus. 1996. A note on a theorem of Barrington, Straubing and Thérien. Inf. Process. Lett. 58, 1, 31--33.
[23]
Arkadev Chattopadhyay, Navin Goyal, Pavel Pudlák, and Denis Thérien. 2006. Lower bounds for circuits with MODm gates. In Proceedings of FOCS. 709--718.
[24]
Arkadev Chattopadhyay and Avi Wigderson. 2009. Linear systems over composite moduli. In Proceedings of FOCS. 43--52.
[25]
Stephen A. Cook. 1988. Short propositional formulas represent nondeterministic computations. Inf. Proc. Lett. 26, 5, 269--270.
[26]
Don Coppersmith. 1982. Rapid multiplication of rectangular matrices. SIAM J. Comput. 11, 3, 467--471.
[27]
Don Coppersmith. 1997. Rectangular matrix multiplication revisited. J. Complex. 13, 42--49.
[28]
Evgeny Dantsin and Edward A. Hirsch. 2009. Worst-case upper bounds. In Handbook of Satisfiability, 403--424.
[29]
Lance Fortnow, Richard J. Lipton, Dieter van Melkebeek, and Anastasios Viglas. 2005. Time-space lower bounds for satisfiability. J. ACM 52, 6, 835--865.
[30]
Merrick L. Furst, James B. Saxe, and Michael Sipser. 1984. Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theory 17, 1, 13--27.
[31]
Frederic Green, Johannes Kobler, Kenneth W. Regan, Thomas Schwentick, and Jacobo Torán. 1995. The power of the middle bit of a #P function. J. Comput. System Sci. 50, 3, 456--467.
[32]
Vince Grolmusz. 1998. A lower bound for depth-3 circuits with MOD m gates. Inf. Proc. Lett. 67, 2, 87--90.
[33]
Vince Grolmusz and Gábor Tardos. 2000. Lower bounds for (MODp-MODm) circuits. SIAM J. Comput. 29, 4, 1209--1222.
[34]
Yuri Gurevich and Saharon Shelah. 1989. Nearly linear time. In Proceedings of the Symposium on Logical Foundations of Computer Science, A. R. Meyer and M. A. Taitslin Eds., Lecture Notes in Computer Science, vol. 363, Springer, Berlin, 108--118.
[35]
Kristoffer Arnsfelt Hansen. 2006. Constant width planar computation characterizes ACC0. Theory Comput. Syst. 39, 1, 79--92.
[36]
Kristoffer Arnsfelt Hansen and Michal Koucký. 2010. A new characterization of ACC0 and probabilistic CC0. Computat. Complex. 19, 2, 211--234.
[37]
Johan Håstad. 1986. Almost optimal lower bounds for small depth circuits. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing. 6--20.
[38]
John E. Hopcroft and J. Musinski. 1973. Duality applied to the complexity of matrix multiplication and other bilinear forms. SIAM J. Comput. 2, 3, 159--173.
[39]
Xiaohan Huang and Victor Y. Pan. 1998. Fast rectangular matrix multiplication and applications. J. Complex. 14, 2, 257--299.
[40]
Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. 2002. In search of an easy witness: Exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci. 65, 4, 672--694.
[41]
Russell Impagliazzo, William Matthews, and Ramamohan Paturi. 2012. A satisfiability algorithm for AC0. In Proceedings of SODA. 961--972.
[42]
Kazuo Iwama and Hiroki Morizumi. 2002. An explicit lower bound of 5n − o(n) for Boolean circuits. In Proceedings of MFCS. 353--364.
[43]
Valentine Kabanets and Russell Impagliazzo. 2004. Derandomizing polynomial identity tests means proving circuit lower bounds. Computat. Complex. 13, 1--2, 1--46.
[44]
Ravi Kannan. 1982. Circuit-size lower bounds and non-reducibility to sparse sets. Inf. Control 55, 1, 40--56.
[45]
Ravi Kannan, H. Venkateswaran, V. Vinay, and Andrew Chi-Chih Yao. 1993. A circuit-based proof of Toda’s theorem. Inf. Comput. 104, 2, 271--276.
[46]
Adam Klivans and Dieter van Melkebeek. 2002. Graph nonisomorphism has subexponential size proofs unless the polynomial hierarchy collapses. SIAM J. Comput. 31, 5, 1501--1526.
[47]
Matthias Krause and Pavel Pudlák. 1997. On the computational power of depth-2 circuits with threshold and modulo gates. Theoret. Comput. Sci. 174, 1--2, 137--156.
[48]
Oded Lachish and Ran Raz. 2001. Explicit lower bound of 4.5n − o(n) for Boolena circuits. In Proceedings of STOC. 399--408.
[49]
Peter Bro Miltersen, N. V. Vinodchandran, and Osamu Watanabe. 1999. Super-polynomial versus half-exponential circuit size in the exponential hierarchy. In Proceedings of COCOON. Lecture Notes in Computer Science, vol. 1627, Springer, 210--220.
[50]
Noam Nisan and Avi Wigderson. 1994. Hardness vs randomness. J. Comput. Syst. Sci. 49, 2, 149--167.
[51]
Victor Y. Pan. 1984. How to Multiply Matrices Faster. Lecture Notes in Computer Science, vol. 179, Springer-Verlag.
[52]
Christos H. Papadimitriou and Mihalis Yannakakis. 1986. A note on succinct representations of graphs. Inf. Control 71, 3, 181--185.
[53]
Wolfgang J. Paul and Rüdiger Reischuk. 1980. On alternation II. A graph theoretic approach to determinism versus nondeterminism. Acta Informatica 14, 4, 391--403.
[54]
Alexander Razborov and Steven Rudich. 1997. Natural proofs. J. Comput. Syst. Sci. 55, 1, 24--35.
[55]
Alexander A. Razborov. 1985. Lower bounds for the monotone complexity of some Boolean functions. Sov. Math. Dokl. 31, 354--357.
[56]
Alexander A. Razborov. 1987. Lower bounds on the size of bounded-depth networks over the complete basis with logical addition. Math. Notes Acad. Sci. USSR 41, 4, 333--338.
[57]
Alexander A. Razborov. 1989. On the method of approximations. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing. 167--176.
[58]
J. M. Robson. 1991. An O(T log T) reduction from RAM computations to satisfiability. Theoret. Comput. Sci. 82, 1, 141--149.
[59]
Rahul Santhanam. 2010. Fighting perebor: New and improved algorithms for formula and QBF satisfiability. In Proceedings of FOCS. 183--192.
[60]
Rahul Santhanam and Ryan Williams. 2013. On medium-uniformity and circuit lower bounds. In Proceedings of the IEEE Conference on Computational Complexity. 15--23.
[61]
Claus-Peter Schnorr. 1978. Satisfiability is quasilinear complete in NQL. J. ACM 25, 1, 136--145.
[62]
Arnold Schönhage. 1981. Partial and total matrix multiplication. SIAM J. Comput. 10, 3, 434--455.
[63]
Rainer Schuler. 2005. An algorithm for the satisfiability problem of formulas in conjunctive normal form. J. Algor. 54, 1, 40--44.
[64]
Joel Seiferas, Michael Fischer, and Albert Meyer. 1978. Separating nondeterministic time complexity classes. J. ACM 25, 1, 146--167.
[65]
Kazuhisa Seto and Suguru Tamaki. 2013. A satisfiability algorithm and average-case hardness for formulas over the full binary basis. Computat. Complex. 22, 2, 245--274.
[66]
Roman Smolensky. 1987. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In Proceedings of STOC. 77--82.
[67]
Denis Thérien. 1994. Circuits constructed with MODq gates cannot compute AND in sublinear size. Computat. Complex. 4, 383--388.
[68]
Seinosuke Toda. 1991. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20, 5, 865--877.
[69]
Iannis Tourlakis. 2001. Time-space tradeoffs for SAT on nonuniform machines. J. Comput. Syst. Sci. 63, 2, 268--287.
[70]
G. S. Tseitin. 1968. On the complexity of derivation in propositional calculus. In Studies in Constructive Mathematics and Mathematical Logics, 115--125.
[71]
Leslie Valiant and Vijay Vazirani. 1986. NP is as easy as detecting unique solutions. Theoret. Comp. Sci. 47, 3, 85--93.
[72]
Fengming Wang. 2011. NEXP does not have non-uniform quasipolynomial-size ACC circuits of o(loglogn) depth. In Proceedings of TAMC. 164--170.
[73]
Ryan Williams. 2011. Guest column: A casual tour around a circuit complexity bound. SIGACT News 42, 3, 54--76.
[74]
Ryan Williams. 2013. Improving exhaustive search implies superpolynomial lower bounds. SIAM J. Comput. 42, 3, 1218--1244.
[75]
Pei Yuan Yan and Ian Parberry. 1994. Exponential size lower bounds for some depth three circuits. Inf. Comput. 112, 1, 117--130.
[76]
Andrew Chi-Chih Yao. 1985. Separating the polynomial-time hierarchy by oracles (preliminary version). In Proceedings of FOCS. 1--10.
[77]
Andrew Chi-Chih Yao. 1990. On ACC and threshold circuits. In Proceedings of FOCS. 619--627.
[78]
Stanislav Žák. 1983. A Turing machine time hierarchy. Theoret. Comput. Sci. 26, 3, 327--333.

Cited By

View all
  • (2024)Computationally Hard Problems for Logic Programs under Answer Set SemanticsACM Transactions on Computational Logic10.1145/367696425:4(1-26)Online publication date: 10-Jul-2024
  • (2024)Self-Improvement for Circuit-Analysis ProblemsProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649723(1374-1385)Online publication date: 10-Jun-2024
  • (2024)Hardness of Range Avoidance and Remote Point for Restricted Circuits via CryptographyProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649602(620-629)Online publication date: 10-Jun-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of the ACM
Journal of the ACM  Volume 61, Issue 1
January 2014
222 pages
ISSN:0004-5411
EISSN:1557-735X
DOI:10.1145/2578041
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 January 2014
Accepted: 01 May 2013
Revised: 01 July 2012
Received: 01 May 2011
Published in JACM Volume 61, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. ACC
  2. Circuit complexity
  3. NEXP
  4. lower bounds
  5. satisfiability

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)269
  • Downloads (Last 6 weeks)35
Reflects downloads up to 04 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Computationally Hard Problems for Logic Programs under Answer Set SemanticsACM Transactions on Computational Logic10.1145/367696425:4(1-26)Online publication date: 10-Jul-2024
  • (2024)Self-Improvement for Circuit-Analysis ProblemsProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649723(1374-1385)Online publication date: 10-Jun-2024
  • (2024)Hardness of Range Avoidance and Remote Point for Restricted Circuits via CryptographyProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649602(620-629)Online publication date: 10-Jun-2024
  • (2024)Rigid Matrices from Rectangular PCPsSIAM Journal on Computing10.1137/22M149559753:2(480-523)Online publication date: 3-Apr-2024
  • (2024)Nondeterministic Quasi-Polynomial Time is Average-Case Hard for \(\textsf{ACC}\) CircuitsSIAM Journal on Computing10.1137/20M1321231(FOCS19-332-FOCS19-397)Online publication date: 23-Feb-2024
  • (2023)Bounded RelativizationProceedings of the conference on Proceedings of the 38th Computational Complexity Conference10.4230/LIPIcs.CCC.2023.6(1-45)Online publication date: 17-Jul-2023
  • (2023)Depth-𝑑 Threshold Circuits vs. Depth-(𝑑+1) AND-OR TreesProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585216(895-904)Online publication date: 2-Jun-2023
  • (2023)Range Avoidance, Remote Point, and Hard Partial Truth Table via Satisfying-Pairs AlgorithmsProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585147(1058-1066)Online publication date: 2-Jun-2023
  • (2023)Unprovability of Strong Complexity Lower Bounds in Bounded ArithmeticProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585144(1051-1057)Online publication date: 2-Jun-2023
  • (2023)Substitution Principle and semidirect productsMathematical Structures in Computer Science10.1017/S096012952300029433:6(486-535)Online publication date: 15-Aug-2023
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media