Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

B-open Defect: A Novel Defect Model in FinFET Technology

Published: 09 December 2022 Publication History

Abstract

This article proposes an electrical analysis of a new defect mechanism, to be named as b-open defect, which may occur in nanometer technologies due to the use of the Self-Aligned Double Patterning (SADP) technique. In metal lines making use of the SADP technique, a single dust particle may cause the simultaneous occurrence of a bridge defect and an open defect. When the two defects impact the same gates, the electrical effects of the bridge and the open combine and exhibit a new specific electrical behavior; we call this new defect behavior a b-open. As a consequence, existing test generation methodologies may miss defect detection. The electrical behavior of the b-open defect is first analyzed graphically and then validated through extensive SPICE simulations. The test pattern conditions to detect the b-open defect are finally determined, and it is shown that the b-open defect requires specific test generation.

References

[1]
Mohan V. Dunga, Chung-Hsun Lin, Xuemei (Jane) Xi, Darsen D. Lu, Ali M. Niknejad, and Chenming Hu. 2006. Modeling advanced FET technology in a compact model. IEEE Trans. Electron Devices 53, 9 (Sept.2006), 1971–1978. DOI:
[2]
Ajay N. Bhoj, Muzaffer O. Simsir, and Niraj K. Jha. 2012. Fault models for logic circuits in the multigate era. IEEE Trans. Nanotechnol. 11, 1 (2012), 182–193.
[3]
Yuxi Liu and Qiang Xu. 2012. On modeling faults in FinFET logic circuits. In IEEE International Test Conference. IEEE, 1–9.
[4]
Kuan-Ying Chiang, Yu-Hao Ho, Yo-Wei Chen, Cheng-Sheng Pan, and James Chien-Mo Li. 2015. Fault simulation and test pattern generation for cross-gate defects in FinFET circuits. In IEEE 24th Asian Test Symposium (ATS’15). IEEE, 181–186.
[5]
Amit Karel, Mariane Comte, Jean-Marc Galliere, Florence Azais, and Michel Renovell. 2017. Resistive bridging defect detection in bulk, FDSOI and FinFET technologies. J. Electron. Test. 33, 4 (1 Aug.2017), 515–527. DOI:
[6]
R. Dibaj, D. Al-Khalili, and M. Shams. 2017. Comprehensive investigation of gate oxide short in FinFETs. In IEEE 35th VLSI Test Symposium (VTS’17). 1–6.
[7]
Gurgen Harutyunyan, G. Tshagharyan, V. Vardanian, and Yervant Zorian. 2014. Fault modeling and test algorithm creation strategy for FinFET-based memories. In IEEE 32nd VLSI Test Symposium (VTS’14). IEEE, 1–6.
[8]
G. Tshagharyan, G. Harutyunyan, S. Shoukourian, and Y. Zorian. 2015. Overview study on fault modeling and test methodology development for FinFET-based memories. In IEEE East-West Design & Test Symposium (EWDTS’15). IEEE, 1–4.
[9]
G. Harutyunyan, S. Shoukourian, V. Vardanian, and Y. Zorian. 2014. Extending fault periodicity table for testing faults in memories under 20nm. In East-West Design & Test Symposium (EWDTS). IEEE, 1–4.
[10]
F. Forero, H. Villacorta, M. Renovell, and V. Champac. 2019. Modeling and detectability of full open gate defects in FinFET technology. IEEE Trans. Very Large Scale Integ. (VLSI) Syst. 27, 9 (Jan.2019), 2180–2190. DOI:
[11]
Yongchan Ban, Alex Miloslavsky, Kevin Lucas, Soo-Han Choi, Chul-Hong Park, and David Z. Pan. 2011. Layout decomposition of self-aligned double patterning for 2D random logic patterning. In Design for Manufacturability through Design-Process Integration V (SPIE Proceedings Vol. 7974). SPIE.
[12]
Y. Ding, C. Chu, and W. Mak. 2017. Self-aligned double patterning lithography aware detailed routing with color preassignment. IEEE Trans. Comput.-aid. Des. Integ. Circ. Syst. 36, 8 (2017), 1381–1394.
[13]
Christopher Bencher, Huixiong Dai, and Yongmei Chen. 2009. Gridded design rule scaling: Taking the CPU toward the 16nm node. In Optical Microlithography XXII, Vol. 7274. International Society for Optics and Photonics, 72740G.
[14]
W. Maly. 1987. Realistic fault modeling for VLSI testing. In 24th ACM/IEEE Design Automation Conference. 173–180. DOI:
[15]
Gurminder Singh, Kfir Dotan, Saar Shabtay, Man-Ping Cai, Noam Shachar, Chris Ngai, Chris Bencher, Liyan Miao, and Yongmei Chen. 2012. Small particle defect characterization on critical layers of 22nm Spacer Self-Aligned Double Patterning (SADP). In Metrology, Inspection, and Process Control for Microlithography XXVI, Vol. 8324. International Society for Optics and Photonics, 83241X.
[16]
M. Renovell, P. Huc, and Y. Bertrand. 1994. CMOS bridging fault modeling. In VLSI Test Symposium. 392–397. DOI:
[17]
V. R. Sar-Dessai and D. M. H. Walker. 1999. Resistive bridge fault modeling, simulation and test generation. In International Test Conference. 596–605. DOI:
[18]
M. Renovell and G. N. Cambon. 1992. Electrical analysis and modeling of floating-gate fault. IEEE Trans. Comput.-aid. Des. Integ. Circ. Syst. 11, 11 (Nov.1992), 1450–1458. DOI:
[19]
J. Moreno, M. Renovell, and V. Champac. 2016. Effectiveness of low-voltage testing to detect interconnect open defects under process variations. IEEE Trans. Very Large Scale Integ. (VLSI) Syst. 24, 1 (Jan.2016), 378–382. DOI:
[20]
S. Johnson. 1994. Residual charge on the faulty floating gate CMOS transistor. In International Test Conference. 555–561. DOI:
[21]
V. H. Champac and A. Zenteno. 2000. Detectability conditions for interconnection open defects. In 18th IEEE VLSI Test Symposium. 305–311. DOI:
[22]
N. Ahmed, M. Tehranipoor, and V. Jayaram. 2007. Supply voltage noise aware ATPG for transition delay faults. In 25th IEEE VLSI Test Symposium (VTS’07). 179–186. DOI:
[23]
S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, R. Mehandru, S. Morarka, L. Neiberg, P. Packan, A. Paliwal, C. Parker, P. Patel, R. Patel, C. Pelto, L. Pipes, P. Plekhanov, M. Prince, S. Rajamani, J. Sandford, B. Sell, S. Sivakumar, P. Smith, B. Song, K. Tone, T. Troeger, J. Wiedemer, M. Yang, and K. Zhang. 2014. A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 \(\mu\) m2 SRAM cell size. In IEEE International Electron Devices Meeting. 3.7.1–3.7.3. DOI:
[24]
J. P. Duarte, S. Khandelwal, A. Medury, C. Hu, P. Kushwaha, H. Agarwal, A. Dasgupta, and Y. S. Chauhan. 2015. BSIM-CMG: Standard FinFET compact model for advanced circuit design. In 41st European Solid-State Circuits Conference (ESSCIRC’15). 196–201. DOI:
[25]
BSIM-CMG Model. 2018 [Online]. Retrieved from http://bsim.berkeley.edu/models/bsimcmg.
[26]
Predictive Technology Model (PTM), 2018 [Online]. Available: http://ptm.asu.edu/.
[27]
John M. Acken and Steven D. Millman. 1991. Accurate modeling and simulation of bridging faults. In IEEE Custom Integrated Circuits Conference. IEEE, 17.4/1–17.4/4.
[28]
Y. Ding, C. Chu, and W. Mak. 2014. Cell-aware test. IEEE Trans. Comput.-aid. Des. Integ. Circ. Syst. 33, 9 (2014), 1396–1409.
[29]
Kyoung Youn Cho, S. Mitra, and E. J. McCluskey. 2005. Gate exhaustive testing. In International Test Conference. IEEE, 1–7.
[30]
Vijay R. Sar-Dessai and D. M. H. Walker. 1999. Resistive bridge fault modeling, simulation and test generation. In International Test Conference. IEEE, 596–605.
[31]
P. Engelke, I. Polian, M. Renovell, and B. Becker. 2006. Simulating resistive-bridging and stuck-at faults. IEEE Trans. Comput.-aid. Des. Integ. Circ. Syst. 25, 10 (Oct.2006), 2181–2192. DOI:
[32]
Stefan Spinner, Ilia Polian, Piet Engelke, Bernd Becker, Martin Keim, and Wu-Tung Cheng. 2008. Automatic test pattern generation for interconnect open defects. In IEEE VLSI Test Symposium. IEEE, 181–186.
[33]
R. D. S. Blanton, K. N. Dwarakanath, and A. B. Shah. 2003. Analyzing the effectiveness of multiple-detect test sets. In International Test Conference. IEEE, 876–885.
[34]
S. K. Goel, N. Devta-Prasanna, and M. Ward. 2009. Comparing the effectiveness of deterministic bridge fault and multiple-detect stuck fault patterns for physical bridge defects: A simulation and silicon study. In International Test Conference. IEEE, 1–10.
[35]
G. Cardoso Medeiros, M. Fieback, L. Wu, M. Taouil, L. Bolzani Poehls, and S. Hamdioui. 2021. Hard-to-detect fault analysis in FinFET SRAMs. IEEE Trans. Very Large Scale Integ. Syst. 29, 6 (2021), 1271–1284.
[36]
Jaume A. Segura, Victor H. Champac, Rosa Rodriguez-Montanes, Joan Figueras, and J. A. Rubio. 1992. Quiescent current analysis and experimentation of defective CMOS circuits. J. Electron. Test.: Theor. Applic. 3, 4 (1992), 337–348.
[37]
Kyong Taek Lee, Wonchang Kang, Eun-Ae Chung, Gunrae Kim, Hyewon Shim, Hyunwoo Lee, Hyejin Kim, Minhyeok Choe, Nae-In Lee, Anuj Patel, Junekyun Park, and Jongwoo Park. 2013. Technology scaling on high- & metal-gate FinFET BTI reliability. In IEEE International Reliability Physics Symposium (IRPS’13). IEEE, 2D.1.1–2D.1.4.
[38]
V. Gupta, S. Khandelwal, J. Mathew, and M. Ottavi. 2018. 45nm bit-interleaving differential 10T low leakage FinFET based SRAM with column-wise write access control. In IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems. IEEE, 1–6.

Cited By

View all
  • (2024)Aggravated NBTI reliability due to hard-to-detect open defectsMicroelectronics Reliability10.1016/j.microrel.2024.115480160(115480)Online publication date: Sep-2024
  • (2023)Test Aspects of System Health State Monitoring2023 IEEE 24th Latin American Test Symposium (LATS)10.1109/LATS58125.2023.10154480(1-2)Online publication date: 21-Mar-2023

Index Terms

  1. B-open Defect: A Novel Defect Model in FinFET Technology

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Journal on Emerging Technologies in Computing Systems
    ACM Journal on Emerging Technologies in Computing Systems  Volume 19, Issue 1
    January 2023
    187 pages
    ISSN:1550-4832
    EISSN:1550-4840
    DOI:10.1145/3573312
    • Editor:
    • Ramesh Karri
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Journal Family

    Publication History

    Published: 09 December 2022
    Online AM: 16 September 2022
    Accepted: 28 August 2022
    Revised: 27 May 2022
    Received: 08 June 2021
    Published in JETC Volume 19, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Test
    2. defect-based test
    3. defect model
    4. test vector generation
    5. advanced technologies

    Qualifiers

    • Research-article
    • Refereed

    Funding Sources

    • CONACYT (Mexico)

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)87
    • Downloads (Last 6 weeks)12
    Reflects downloads up to 06 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Aggravated NBTI reliability due to hard-to-detect open defectsMicroelectronics Reliability10.1016/j.microrel.2024.115480160(115480)Online publication date: Sep-2024
    • (2023)Test Aspects of System Health State Monitoring2023 IEEE 24th Latin American Test Symposium (LATS)10.1109/LATS58125.2023.10154480(1-2)Online publication date: 21-Mar-2023

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    Full Text

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media