Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
survey

A Survey on the Densest Subgraph Problem and its Variants

Published: 30 April 2024 Publication History

Abstract

The Densest Subgraph Problem requires us to find, in a given graph, a subset of vertices whose induced subgraph maximizes a measure of density. The problem has received a great deal of attention in the algorithmic literature since the early 1970s, with many variants proposed and many applications built on top of this basic definition. Recent years have witnessed a revival of research interest in this problem with several important contributions, including some groundbreaking results, published in 2022 and 2023. This survey provides a deep overview of the fundamental results and an exhaustive coverage of the many variants proposed in the literature, with a special attention to the most recent results. The survey also presents a comprehensive overview of applications and discusses some interesting open problems for this evergreen research topic.

References

[1]
S. Ahmadian and S. Haddadan. 2021. The wedge picking model: A theoretical analysis of graph evolution caused by triadic closure and algorithmic implications. J. Strateg. Innov. Sust. 16, 3 (2021), 74–93.
[2]
A. Anagnostopoulos, L. Becchetti, A. Fazzone, C. Menghini, and C. Schwiegelshohn. 2020. Spectral relaxations and fair densest subgraphs. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM’20). 35–44.
[3]
R. Andersen and K. Chellapilla. 2009. Finding dense subgraphs with size bounds. In Proceedings of the 6th International Workshop on Algorithms and Models for the Web-Graph (WAW’09). 25–37.
[4]
A. Angel, N. Sarkas, N. Koudas, and D. Srivastava. 2012. Dense subgraph maintenance under streaming edge weight updates for real-time story identification. Proc. VLDB Endow. 5, 6 (2012), 574–585.
[5]
S. Arora, E. Hazan, and S. Kale. 2012. The multiplicative weights update method: A meta-algorithm and applications. Theory Comput. 8, 1 (2012), 121–164.
[6]
S. Arora, D. Karger, and M. Karpinski. 1995. Polynomial time approximation schemes for dense instances of NP-hard problems. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing (STOC’95). 284–293.
[7]
J. M. Arrazola and T. R. Bromley. 2018. Using gaussian boson sampling to find dense subgraphs. Phys. Rev. Lett. 121, 3 (2018), 030503.
[8]
Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. 2000. Greedily finding a dense subgraph. J. Algor. 34, 2 (2000), 203–221.
[9]
J. Backer and J. M. Keil. 2010. Constant factor approximation algorithms for the densest k-subgraph problem on proper interval graphs and bipartite permutation graphs. Inform. Process. Lett. 110, 16 (2010), 635–638.
[10]
B. Bahmani, A. Goel, and K. Munagala. 2014. Efficient primal-dual graph algorithms for MapReduce. In Proceedings of the 11th International Workshop on Algorithms and Models for the Web-Graph (WAW). Springer, 59–78.
[11]
B. Bahmani, R. Kumar, and S. Vassilvitskii. 2012. Densest subgraph in streaming and MapReduce. Proc. VLDB Endow. 5, 5 (2012), 454–465.
[12]
O. D. Balalau, F. Bonchi, T. H. H. Chan, F. Gullo, and M. Sozio. 2015. Finding subgraphs with maximum total density and limited overlap. In Proceedings of the 8th ACM International Conference on Web Search and Data Mining (WSDM’15). 379–388.
[13]
S. Barman. 2018. Approximating Nash equilibria and dense subgraphs via an approximate version of Carathéodory’s theorem. SIAM J. Comput. 47, 3 (2018), 960–981.
[14]
S. K. Bera, S. Bhattacharya, J. Choudhari, and P. Ghosh. 2022. A new dynamic algorithm for densest subhypergraphs. In Proceedings of the ACM Web Conference (TheWebConf’22). 1093–1103.
[15]
T. Bhadra and S. Bandyopadhyay. 2021. Supervised feature selection using integration of densest subgraph finding with floating forward–backward search. Inf. Sci. 566 (2021), 1–18.
[16]
A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. 2010. Detecting high log-densities: An \({O}(n^{1/4})\) approximation for densest k-Subgraph. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC’10). 201–210.
[17]
A. Bhaskara, M. Charikar, V. Guruswami, A. Vijayaraghavan, and Y. Zhou. 2012. Polynomial integrality gaps for strong SDP relaxations of Densest k-subgraph. In Proceedings of the 23rd Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’12). 388–405.
[18]
S. Bhattacharya, M. Henzinger, D. Nanongkai, and C.E. Tsourakakis. 2015. Space- and time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic streams. In Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC’15). 173–182.
[19]
A. Billionnet, S. Elloumi, and M.C. Plateau. 2009. Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method. Discr. Appl. Math. 157, 6 (2009), 1185–1197.
[20]
S. Böcker and J. Baumbach. 2013. Cluster editing. In The Nature of Computation. Logic, Algorithms, Applications, P. Bonizzoni, V. Brattka, and B. Löwe (Eds.). 33–44.
[21]
P. Bogdanov, M. Mongiovì, and A.K. Singh. 2011. Mining heavy subgraphs in time-evolving networks. In Proceedings of the 11th IEEE International Conference on Data Mining (ICDM’11). 81–90.
[22]
V. Boginski, S. Butenko, and P. Pardalos. 2003. On structural properties of the market graph. Innov. Financ. Econ. Netw. 48 (2003), 29–35.
[23]
P. Bombina and B. Ames. 2020. Convex optimization for the densest subgraph and densest submatrix problems. SN Operat. Res. Forum 1 (2020), 1–24.
[24]
F. Bonchi, I. Bordino, F. Gullo, and G. Stilo. 2016. Identifying buzzing stories via anomalous temporal subgraph discovery. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (WI’16). 161–168.
[25]
F. Bonchi, I. Bordino, F. Gullo, and G. Stilo. 2019. The importance of unexpectedness: Discovering buzzing stories in anomalous temporal graphs. Web Intell. 17, 3 (2019), 177–198.
[26]
F. Bonchi, D. García-Soriano, and F. Gullo. 2022. Correlation clustering. Synth. Lect. Data Min. Knowl. Discov. 12, 1 (Mar.2022), 1–149.
[27]
F. Bonchi, D. García-Soriano, A. Miyauchi, and C.E. Tsourakakis. 2021. Finding densest k-connected subgraphs. Discr. Appl. Math. 305 (2021), 34–47.
[28]
F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich. 2014. Core decomposition of uncertain graphs. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’14). 1316–1325.
[29]
F. Bonchi, A. Khan, and L. Severini. 2019. Distance-generalized core decomposition. In Proceedings of the International Conference on Management of Data (SIGMOD’19). 1006–1023.
[30]
D. Boob, Y. Gao, R. Peng, S. Sawlani, C.E. Tsourakakis, D. Wang, and J. Wang. 2020. Flowless: Extracting densest subgraphs without flow computations. In Proceedings of the ACM Web Conference (TheWebConf’20). 573–583.
[31]
D. Boob, S. Sawlani, and D. Wang. 2019. Faster width-dependent algorithm for mixed packing and covering LPs. In Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS’19). 15253–15262.
[32]
N. Bourgeois, A. Giannakos, G. Lucarelli, I. Milis, and V. T. Paschos. 2013. Exact and approximation algorithms for densest k-Subgraph. In Proceedings of the 7th International Workshop on Algorithms and Computation (WALCOM’13). 114–125.
[33]
M. Braverman, Y.K. Ko, A. Rubinstein, and O. Weinstein. 2017. ETH hardness for densest-k-subgraph with perfect completeness. In Proceedings of the 28th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’17). 1326–1341.
[34]
H. Broersma, P. A. Golovach, and V. Patel. 2013. Tight complexity bounds for FPT subgraph problems parameterized by the clique-width. Theor. Comput. Sci. 485 (2013), 69–84.
[35]
A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. 2016. Recent advances in graph partitioning. In Algorithm Engineering, L. Kliemann and P. Sanders (Eds.). Springer, 117–158.
[36]
J. Cadena, A. Kumar Vullikanti, and Charu C. A.2016. On dense subgraphs in signed network streams. In Proceedings of the 16th IEEE International Conference on Data Mining (ICDM’16). 51–60.
[37]
L. Cai. 2008. Parameterized complexity of cardinality constrained optimization problems. Comput. J. 51, 1 (2008), 102–121.
[38]
L. Chang and L. Qin. 2018. Cohesive Subgraph Computation over Large Sparse Graphs: Algorithms, Data Structures, and Programming Techniques. Springer.
[39]
S. C. Chang, L. H. Chen, L. J. Hung, S. S. Kao, and R. Klasing. 2020. The hardness and approximation of the densest k-subgraph problem in parameterized metric graphs. In Proceedings of the International Computer Symposium (ICS’20). 126–130.
[40]
M. Charikar. 2000. Greedy approximation algorithms for finding dense components in a graph. In Proceedings of the 3rd International Workshop on Approximation Algorithms for Combinatorial Optimization (APPROX’00). 84–95.
[41]
M. Charikar, Y. Naamad, and J. Wu. 2018. On finding dense common subgraphs. CoRR abs/1802.06361.
[42]
C. Chekuri and K. Quanrud. 2022. (1-\(\epsilon\))-approximate fully dynamic densest subgraph: Linear space and faster update time. CoRR abs/2210.02611.
[43]
C. Chekuri, K. Quanrud, and M. R. Torres. 2022. Densest subgraph: Supermodularity, iterative peeling, and flow. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA’22). SIAM, 1531–1555.
[44]
C. Chekuri and M. R. Torres. 2023. On the generalized mean densest subgraph problem: Complexity and algorithms. arXiv:2306.02172. Retrieved from https://arxiv.org/abs/2306.02172
[45]
D. Z. Chen, R. Fleischer, and J. Li. 2010. Densest k-subgraph approximation on intersection graphs. In Proceedings of the 8th International Workshop on Approximation and Online Algorithms (WAOA’10). 83–93.
[46]
J. Chen and Y. Saad. 2012. Dense subgraph extraction with application to community detection. IEEE Trans. Knowl. Data Eng. 24, 7 (2012), 1216–1230.
[47]
S. Chen, T. Lin, I. King, M. R. Lyu, and W. Chen. 2014. Combinatorial pure exploration of multi-armed bandits. In Proceedings of the 28th Conference on Neural Information Processing Systems (NIPS’14). 379–387.
[48]
T. Chen, F. Bonchi, D. García-Soriano, A. Miyauchi, and C.E. Tsourakakis. 2022. Dense and well-connected subgraph detection in dual networks. In Proceedings of the SIAM International Conference on Data Mining (SDM’22). 361–369.
[49]
T. Chen, B. Matejek, M. Mitzenmacher, and C.E. Tsourakakis. 2022. Algorithmic tools for understanding the motif structure of networks. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD’22).
[50]
T. Chen and C. E. Tsourakakis. 2022. Antibenford subgraphs: Unsupervised anomaly detection in financial networks. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’22). 2762–2770.
[51]
W. Chen, Y. Wang, and Y. Yuan. 2013. Combinatorial multi-armed bandit: General framework and applications. In Proceedings of the 30th International Conference on Machine Learning (ICML’13). 151–159.
[52]
J. Cheriyan, T. Hagerup, and K. Mehlhorn. 1996. An \(o(n^3)\)-time maximum-flow algorithm. SIAM J. Comput. 25, 6 (1996), 1144–1170.
[53]
E. J. Chesler and M. A. Langston. 2005. Combinatorial genetic regulatory network analysis tools for high throughput transcriptomic data. In Proceedings of the Joint Annual RECOMB Satellite Workshops on Systems Biology and on Regulatory Genomics. 150–165.
[54]
E. Chlamtác, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca. 2018. The densest k-subhypergraph problem. SIAM J. Discr. Math. 32, 2 (2018), 1458–1477.
[55]
C. Chekuri, A. B. Christiansen, J. Holm, I. van der Hoog, K. Quanrud, E. Rotenberg, C. Schwiegelshohn. 2024. Adaptive out-orientations with applications. In Proceedings of the 2024 Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’24). 3062–3088.
[56]
D. Chu, F. Zhang, W. Zhang, X. Lin, and Y. Zhang. 2022. Hierarchical core decomposition in parallel: From construction to subgraph search. In Proceedings of the 38th IEEE International Conference on Data Engineering (ICDE’22). 1138–1151.
[57]
L. Chu, Y. Zhang, Y. Yang, L. Wang, and J. Pei. 2019. Online density bursting subgraph detection from temporal graphs. Proc. VLDB Endow. 12, 13 (2019), 2353–2365.
[58]
J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan. 2023. A new conjecture on hardness of 2-CSP’s with implications to hardness of densest k-subgraph and other problems. In Proceedings of the 14th Conference on Innovations in Theoretical Computer Science (ITCS’23). 38:1–38:23.
[59]
E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. 2002. Reachability and distance queries via 2-hop labels. In Proceedings of the 13th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’02). 937–946.
[60]
L. Corinzia, P. Penna, W. Szpankowski, and J. Buhmann. 2022. Statistical and computational thresholds for the planted k-densest sub-hypergraph problem. In Proceedings of the 25th International Conference on Artificial Intelligence and Statistics (AISTATS’22). 11615–11640.
[61]
T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein. 2022. Introduction to Algorithms, 4th edition. MIT Press.
[62]
G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang. 2010. Optimal sampling from distributed streams. In Proceedings of the 29th ACM SIGMOD–SIGACT–SIGART Symposium on Principles of Database Systems (PODS’10). 77–86.
[63]
M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. 2015. Parameterized Algorithms. Springer.
[64]
A. D. Sarma, A. Lall, D. Nanongkai, and A. Trehan. 2012. Dense subgraphs on dynamic networks. In Proceedings of the 26th International Symposium on Distributed Computing (DISC’12). 151–165.
[65]
Y. Dai, M. Qiao, and L. Chang. 2022. Anchored densest subgraph. In Proceedings of the International Conference on Management of Data (SIGMOD’22). 1200–1213.
[66]
J. Ding and H. Du. 2023. Detection threshold for correlated Erdős-Rényi graphs via densest subgraph. IEEE Trans. Inf. Theory 69, 8 (2023), 5289–5298.
[67]
W. Dinkelbach. 1967. On nonlinear fractional programming. Manage. Sci. 13, 7 (1967), 492–498.
[68]
R. Dondi and M. M. Hosseinzadeh. 2021. Dense sub-networks discovery in temporal networks. SN Comput. Sci. 2, 3 (2021).
[69]
Y. Dourisboure, F. Geraci, and M. Pellegrini. 2007. Extraction and classification of dense communities in the web. In Proceedings of the 16th International Conference on World Wide Web (WWW’07). 461–470.
[70]
Y. Dourisboure, F. Geraci, and M. Pellegrini. 2009. Extraction and classification of dense implicit communities in the Web graph. ACM Trans. Web 3, 2 (2009), 1–36.
[71]
A. Epasto, S. Lattanzi, and M. Sozio. 2015. Efficient densest subgraph computation in evolving graphs. In Proceedings of the 24th International Conference on World Wide Web (WWW’15). 300–310.
[72]
H. Esfandiari, M. Hajiaghayi, and D.P. Woodruff. 2016. Brief announcement: Applications of uniform sampling: Densest subgraph and beyond. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’16). 397–399.
[73]
H. Esfandiari and M. Mitzenmacher. 2018. Metric sublinear algorithms via linear sampling. In Proceedings of the IEEE Annual Symposium on Foundations of Computer Science (FOCS’18). 11–22.
[74]
L. Everett, L. S. Wang, and S. Hannenhalli. 2006. Dense subgraph computation via stochastic search: Application to detect transcriptional modules. Bioinformatics 22, 14 (2006), e117–e123.
[75]
Y. Fang, W. Luo, and C. Ma. 2022. Densest subgraph discovery on large graphs: Applications, challenges, and techniques. Proc. VLDB Endow. 15, 12 (2022), 3766–3769.
[76]
Y. Fang, K. Wang, X. Lin, and W. Zhang. 2022. Cohesive Subgraph Search over Large Heterogeneous Information Networks. Springer.
[77]
Y. Fang, K. Yu, R. Cheng, L.V.S. Lakshmanan, and X. Lin. 2019. Efficient algorithms for densest subgraph discovery. Proc. VLDB Endow. 12, 11 (2019), 1719–1732.
[78]
A. Faragó and Z.R. Mojaveri. 2019. In search of the densest subgraph. Algorithms 12, 8 (2019).
[79]
A. Fazzone, T. Lanciano, R. Denni, C. E. Tsourakakis, and F. Bonchi. 2022. Discovering polarization niches via dense subgraphs with attractors and repulsers. Proc. VLDB Endow. 15, 13 (Sep. 2022), 3883–3896.
[80]
U. Feige. 2002. Relations between average case complexity and approximation complexity. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC’02). 534–543.
[81]
U. Feige, G. Kortsarz, and D. Peleg. 2001. The dense k-subgraph problem. Algorithmica 29, 3 (2001), 410–421.
[82]
U. Feige and M. Langberg. 2001. Approximation algorithms for maximization problems arising in graph partitioning. J. Algor. 41, 2 (2001), 174–211.
[83]
U. Feige and M. Seltser. 1997. On the Densest k-subgraph Problem. Technical Report. Department of Applied Math and Computer Science, The Weizmann Institute.
[84]
J. Feng, R. Jiang, and T. Jiang. 2011. A max-flow-based approach to the identification of protein complexes using protein interaction and microarray data. IEEE/ACM Trans. Comput. Biol. Bioinf. 8, 3 (2011), 621–634.
[85]
W. Feng, S. Liu, D. Koutra, H. Shen, and X. Cheng. 2020. SpecGreedy: Unified dense subgraph detection. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD’20). 181–197.
[86]
S. Fortunato. 2010. Community detection in graphs. Phys. Rep. 486, 3-5 (2010), 75–174.
[87]
E. Fratkin, B.T. Naughton, D.L. Brutlag, and S. Batzoglou. 2006. MotifCut: Regulatory motifs finding with maximum density subgraphs. Bioinformatics 22, 14 (2006), e150–e157.
[88]
S. Fujishige. 2005. Submodular Functions and Optimization. Annals of Discrete Mathematics, Vol. 58. Elsevier.
[89]
A. Gajewar and A. Das Sarma. 2012. Multi-skill collaborative teams based on densest subgraphs. In Proceedings of the 2012 SIAM International Conference on Data Mining (SDM’12). 165–176.
[90]
E. Galimberti, F. Bonchi, and F. Gullo. 2017. Core decomposition and densest subgraph in multilayer networks. In Proceedings of the 26th ACM International Conference on Information and Knowledge Management (CIKM’17). 1807–1816.
[91]
E. Galimberti, F. Bonchi, F. Gullo, and T. Lanciano. 2020. Core decomposition in multilayer networks: Theory, algorithms, and applications. ACM Trans. Knowl. Discov. Data 14, 1 (2020), 1–40.
[92]
G. Gallo, M.D. Grigoriadis, and R.E. Tarjan. 1989. A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18, 1 (1989), 30–55.
[93]
S. Gao, R. H. Li, H. Qin, H. Chen, Y. Yuan, and G. Wang. 2022. Colorful h-star core decomposition. In Proceedings of the 38th IEEE International Conference on Data Engineering (ICDE’22). 2588–2601.
[94]
M. Ghaffari, Silvio Lattanzi, and S. Mitrović. 2019. Improved parallel algorithms for density-based network clustering. In Proceedings of the 36th International Conference on Machine Learning (ICML’19). 2201–2210.
[95]
D. Gibson, R. Kumar, and A. Tomkins. 2005. Discovering large dense subgraphs in massive graphs. In Proceedings of the 31st International Conference on Very Large Data Bases (VLDB’05). 721–732.
[96]
A. Gionis and C. E. Tsourakakis. 2015. Dense subgraph discovery: KDD 2015 tutorial. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’15). 2313–2314.
[97]
M. X. Goemans. 1996. Mathematical programming and approximation algorithms. Lecture at the Summer School on Approximate Solution of Hard Combinatorial Problems (1996).
[98]
A. V. Goldberg. 1984. Finding a Maximum Density Subgraph. Technical Report. University of California at Berkeley.
[99]
D. Goldstein and M. Langberg. 2009. The dense k subgraph problem. CoRR abs/0912.5327.
[100]
S. Gonzales and T. Migler. 2019. The densest k subgraph problem in b-outerplanar graphs. In Proceedings of the 8th International Conference on Complex Networks and Their Applications (COMPLEX NETWORKS’19). 116–127.
[101]
M. Grötschel, L. Lovász, and A. Schrijver. 1981. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 2 (1981), 169–197.
[102]
N. V. C. Gudapati, E. Malaguti, and M. Monaci. 2021. In search of dense subgraphs: How good is greedy peeling? Networks 77, 4 (2021), 572–586.
[103]
T. Hanaka. 2023. Computing densest k-subgraph with structural parameters. J. Combin. Optim. 45, 1 (2023), 1–17.
[104]
E. Harb, K. Quanrud, and C. Chekuri. 2022. Faster and scalable algorithms for densest subgraph and decomposition. In Proceedings of the 36th Conference on Neural Information Processing Systems (NeurIPS’22).
[105]
E. Harb, K. Quanrud, and C. Chekuri. 2023. Convergence to lexicographically optimal base in a (contra)polymatroid and applications to densest subgraph and tree packing. arXiv:2305.02987. Retrieved from https://arxiv.org/abs/2305.02987
[106]
F. Hashemi, A. Behrouz, and L.V.S. Lakshmanan. 2022. FirmCore decomposition of multilayer networks. In Proceedings of the ACM Web Conference 2022 (TheWebConf’22). 1589–1600.
[107]
R. Hassin, S. Rubinstein, and A. Tamir. 1997. Approximation algorithms for maximum dispersion. Operat. Res. Lett. 21, 3 (1997), 133–137.
[108]
E. Hazan and R. Krauthgamer. 2011. How hard is it to approximate the best nash equilibrium? SIAM J. Comput. 40, 1 (2011), 79–91.
[109]
M. Henzinger, A. Paz, and A. R. Sricharan. 2022. Fine-grained complexity lower bounds for families of dynamic graphs. In Proceedings of the 30th Annual European Symposium on Algorithms (ESA’22). 65:1–65:14.
[110]
D. S. Hochbaum. 2008. The pseudoflow algorithm: A new algorithm for the maximum-flow problem. Operat. Res. 56, 4 (2008), 992–1009.
[111]
B. Hooi, H.A. Song, A. Beutel, N. Shah, K. Shin, and C. Faloutsos. 2016. FRAUDAR: Bounding graph fraud in the face of camouflage. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16). 895–904.
[112]
H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou. 2005. Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 21, 1 (2005), i213–i221.
[113]
S. Hu, X. Wu, and T. H. H. Chan. 2017. Maintaining densest subsets efficiently in evolving hypergraphs. In Proceedings of the ACM on Conference on Information and Knowledge Management (CIKM’17). Association for Computing Machinery, New York, NY, 929–938.
[114]
D. J. H. Huang and A. B. Kahng. 1995. When clusters meet partitions: New density-based methods for circuit decomposition. In Proceedings of the 1995 IEEE European Design and Test Conference (EDTC’95). 60–64.
[115]
Y. Huang, D.F. Gleich, and N. Veldt. 2023. Densest subhypergraph: Negative supermodular functions and strongly localized methods. arXiv:2310.13792. Retrieved from https://arxiv.org/abs/2310.13792
[116]
R. Impagliazzo and R. Paturi. 2001. On the complexity of k-SAT. J. Comput. Syst. Sci. 62, 2 (2001), 367–375.
[117]
S. Iwata, L. Fleischer, and S. Fujishige. 2001. A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. ACM 48, 4 (2001), 761–777.
[118]
J. JéJé. 1992. An Introduction to Parallel Algorithms. Addison-Wesley.
[119]
V. Jethava and N. Beerenwinkel. 2015. Finding dense subgraphs in relational graphs. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD’15). 641–654.
[120]
Y. Ji, Z. Zhang, X. Tang, J. Shen, X. Zhang, and G. Yang. 2022. Detecting cash-out users via dense subgraphs. In Proceedings of the 28th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’22). 687–697.
[121]
J. Jiang, Y. Li, B. He, B. Hooi, J. Chen, and J. K. Z. Kang. 2022. Spade: A real-time fraud detection framework on evolving graphs. Proc. VLDB Endow. 16, 3 (2022), 461–469.
[122]
R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 2009. 3-HOP: A high-compression indexing scheme for reachability query. In Proceedings of the International Conference on Management of Data (SIGMOD’09). 813–826.
[123]
S. Kamara and T. Moataz. 2019. Computationally volume-hiding structured encryption. In Proceedings of the 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT’19). 183–213.
[124]
R. Kannan and V. Vinay. 1999. Analyzing the Structure of Large Graphs.Technical Report. Institut für Ökonometrie und Operations Research, Universität Bonn.
[125]
Y. Kawase, Y. Kuroki, and A. Miyauchi. 2019. Graph mining meets crowdsourcing: Extracting experts for answer aggregation. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI’19). 1272–1279.
[126]
Y. Kawase and A. Miyauchi. 2018. The densest subgraph problem with a convex/concave size function. Algorithmica 80, 12 (2018), 3461–3480.
[127]
Y. Kawase, A. Miyauchi, and H. Sumita. 2023. Stochastic solutions for dense subgraph discovery in multilayer networks. In Proceedings of the 16th ACM International Conference on Web Search and Data Mining (WSDM’23). 886–894.
[128]
Y. Khanna and A. Louis. 2020. Planted models for the densest k-subgraph problem. In Proceedings of the 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’20). 27:1–27:18.
[129]
S. Khot. 2006. Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM J. Comput. 36, 4 (2006), 1025–1071.
[130]
S. Khuller and B. Saha. 2009. On finding dense subgraphs. In Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP’09). 597–608.
[131]
J. Kim, T. Guo, K. Feng, G. Cong, A. Khan, and F. M. Choudhury. 2020. Densely connected user community and location cluster search in location-based social networks. In Proceedings of the International Conference on Management of Data (SIGMOD’20). 2199–2209.
[132]
C. Komusiewicz and F. Sommer. 2020. FixCon: A generic solver for fixed-cardinality subgraph problems. In Proceedings of the SIAM Symposium on Algorithm Engineering and Experiments (ALENEX’20). 12–26.
[133]
C. Komusiewicz and M. Sorge. 2015. An algorithmic framework for fixed-cardinality optimization in sparse graphs applied to dense subgraph problems. Discr. Appl. Math. 193 (2015), 145–161.
[134]
A. Konar and N. D. Sidiropoulos. 2021. Exploring the subgraph density-size trade-off via the Lovaśz extension. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (WSDM’21). 743–751.
[135]
A. Konar and N. D. Sidiropoulos. 2022. The triangle-densest-k-subgraph problem: Hardness, Lovász extension, and application to document summarization. In Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI’22). 4075–4082.
[136]
G. Kortsarz and D. Peleg. 1994. Generating sparse 2-spanners. J. Algor. 17, 2 (1994), 222–236.
[137]
M. Koutrouli, E. Karatzas, D. Paez-Espino, and G.A. Pavlopoulos. 2020. A guide to conquer the biological network era using graph theory. Front. Bioeng. Biotechnol. 8, 34 (2020), 1–34.
[138]
N. Krislock, J. Malick, and F. Roupin. 2016. Computational results of a semidefinite branch-and-bound algorithm for k-cluster. Comput. Operat. Res. 66 (2016), 153–159.
[139]
Y. Kuroki, A. Miyauchi, J. Honda, and M. Sugiyama. 2020. Online dense subgraph discovery via blurred-graph feedback. In Proceedings of the 37th International Conference on Machine Learning (ICML’20). 5522–5532.
[140]
M. Lampis. 2012. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64 (2012), 19–37.
[141]
T. Lanciano, F. Bonchi, and A. Gionis. 2020. Explainable classification of brain networks via contrast subgraphs. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’20). 3308–3318.
[142]
T. Lanciano, A. Savino, F. Porcu, D. Cittaro, F. Bonchi, and P. Provero. 2023. Contrast subgraphs allow comparing homogeneous and heterogeneous networks derived from omics data. GigaScience 12 (2023), 1–10.
[143]
V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal. 2010. A Survey of Algorithms for Dense Subgraph Discovery. Springer US, Boston, MA, 303–336.
[144]
Y. T. Lee, A. Sidford, and S. C. W. Wong. 2015. A faster cutting plane method and its implications for combinatorial and convex optimization. In Proceedings of the IEEE Annual Symposium on Foundations of Computer Science (FOCS’15). 1049–1065.
[145]
R. Li, J.Y. Lee, J. M. Yang, and T. Akutsu. 2022. Densest subgraph-based methods for protein-protein interaction hot spot prediction. BMC Bioinf. 23, 451 (2022).
[146]
R. Li and K. Quanrud. 2023. Approximate Fully Dynamic Directed Densest Subgraph. arxiv:2312.07827 [cs.DS]. Retrieved from https://arxiv.org/abs/2312.07827
[147]
X. Li, S. Liu, Z. Li, X. Han, C. Shi, B. Hooi, H. Huang, and X. Cheng. 2020. FlowScope: Spotting money laundering based on graphs. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI’20). 4731–4738.
[148]
M. Liazi, I. Milis, and V. Zissimopoulos. 2008. A constant approximation algorithm for the densest k-subgraph problem on chordal graphs. Inform. Process. Lett. 108, 1 (2008), 29–32.
[149]
X. Liu, T. Ge, and Y. Wu. 2022. A stochastic approach to finding densest temporal subgraphs in dynamic graphs. IEEE Trans. Knowl. Data Eng. 34, 7 (2022), 3082–3094.
[150]
W. Luo, Z. Tang, Y. Fang, C. Ma, and X. Zhou. 2023. Scalable algorithms for densest subgraph discovery. In Proceedings of the 39th IEEE International Conference on Data Engineering (ICDE’23). 285–298.
[151]
P. C. Lusk, K. Fathian, and J. P. How. 2021. CLIPPER: A graph-theoretic framework for robust data association. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’21). 13828–13834.
[152]
C. Ma, R. Cheng, L.V.S. Lakshmanan, and X. Han. 2022. Finding locally densest subgraphs: A convex programming approach. Proc. VLDB Endow. 15, 11 (2022), 2719–2732.
[153]
C. Ma, Y. Fang, R. Cheng, L. V. S. Lakshmanan, and X. Han. 2022. A convex-programming approach for efficient directed densest subgraph discovery. In Proceedings of the International Conference on Management of Data (SIGMOD’22). Association for Computing Machinery, New York, NY, 845–859.
[154]
C. Ma, Y. Fang, R. Cheng, L. V. S. Lakshmanan, W. Zhang, and X. Lin. 2020. Efficient algorithms for densest subgraph discovery on large directed graphs. In Proceedings of the International Conference on Management of Data (SIGMOD’20). 1051–1066.
[155]
C. Ma, Y. Fang, R. Cheng, L. V. S. Lakshmanan, W. Zhang, and X. Lin. 2021. Efficient directed densest subgraph discovery. SIGMOD Rec. 50, 1 (Jun.2021), 33–40.
[156]
C. Ma, Y. Fang, R. Cheng, L. V. S. Lakshmanan, W. Zhang, and X. Lin. 2021. On directed densest subgraph discovery. ACM Trans. Database Syst. 46, 4, Article 13 (Nov.2021), 45 pages.
[157]
S. Ma, R. Hu, L. Wang, X. Lin, and J. Huai. 2020. An efficient approach to finding dense temporal subgraphs. IEEE Trans. Knowl. Data Eng. 32, 4 (2020), 645–658.
[158]
W. Mader. 1972. Existenzn-fach zusammenhängender Teilgraphen in Graphen genügend großer Kantendichte. Abhandlung. Math. Semin. Univ. Hamburg 37, 1 (1972), 86–97.
[159]
K. Majbouri Yazdi, A. Majbouri Yazdi, S. Khodayi, J. Hou, W. Zhou, S. Saedy, and M. Rostami. 2020. Prediction optimization of diffusion paths in social networks using integration of ant colony and densest subgraph algorithms. J. High Speed Netw. 26, 2 (2020), 141–153.
[160]
J. Malick and F. Roupin. 2012. Solving k-cluster problems to optimality with semidefinite programming. Math. Program. 136, 2 (2012), 279–300.
[161]
F. D. Malliaros, C. Giatsidis, A. N. Papadopoulos, and M. Vazirgiannis. 2020. The core decomposition of networks: Theory, algorithms and applications. VLDB J. 29 (2020), 61–92.
[162]
F. D. Malliaros and M. Vazirgiannis. 2013. Clustering and community detection in directed networks: A survey. Phys. Rep. 533, 4 (2013), 95–142.
[163]
P. Manurangsi. 2017. Almost-polynomial ratio ETH-hardness of approximating densest k-subgraph. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC’17). 954–961.
[164]
L. Martini, A. Fazzone, M. Gentili, L. Becchetti, and B. Hobbs. 2022. Network based approach to gene prioritization at genome-wide association study loci. CoRR abs/2210.16292.
[165]
A. McGregor, D. Tench, S. Vorotnikova, and H. T. Vu. 2015. Densest subgraph in dynamic graph streams. In Proceedings of the 40th International Symposium on Mathematical Foundations of Computer Science (MFCS’15). 472–482.
[166]
M. Mitzenmacher, J. Pachocki, R. Peng, C. E. Tsourakakis, and S. C. Xu. 2015. Scalable large near-clique detection in large-scale networks via sampling. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’15). 815–824.
[167]
A. Miyauchi, T. Chen, K. Sotiropoulos, and C. E. Tsourakakis. 2023. Densest diverse subgraphs: How to plan a successful cocktail party with diversity. In Proceedings of the 29th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’23). 1710–1721.
[168]
A. Miyauchi, Y. Iwamasa, T. Fukunaga, and N. Kakimura. 2015. Threshold influence model for allocating advertising budgets. In Proceedings of the 32nd International Conference on Machine Learning (ICML’15). 1395–1404.
[169]
A. Miyauchi and N. Kakimura. 2018. Finding a dense subgraph with sparse cut. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM’18). 547–556.
[170]
A. Miyauchi and A. Takeda. 2018. Robust densest subgraph discovery. In Proceedings of the 18th IEEE International Conference on Data Mining (ICDM’18). 1188–1193.
[171]
Y. Mizutani and B. D. Sullivan. 2022. Parameterized complexity of maximum happy set and densest k-subgraph. In Proceedings of the 17th International Symposium on Parameterized and Exact Computation (IPEC’22). 23:1–23:18.
[172]
A. Moro, A. Raganato, and R. Navigli. 2014. Entity linking meets word sense disambiguation: A unified approach. Trans. Assoc. Comput. Ling. 2 (2014), 231–244.
[173]
K. Nagano, Y. Kawahara, and K. Aihara. 2011. Size-constrained submodular minimization through minimum norm base. In Proceedings of the 28th International Conference on Machine Learning (ICML’11). 977–984.
[174]
M. C. V. Nascimento and A. C. P. L. F. de Carvalho. 2011. Spectral methods for graph clustering—A survey. Eur. J. Operat. Res. 211, 2 (2011), 221–231.
[175]
J. B. Orlin. 2009. A faster strongly polynomial time algorithm for submodular function minimization. Math. Program. 118, 2 (2009), 237–251.
[176]
D. Papailiopoulos, I. Mitliagkas, A. Dimakis, and C. Caramanis. 2014. Finding dense subgraphs via low-rank bilinear optimization. In Proceedings of the 31st International Conference on Machine Learning (ICML’14). 1890–1898.
[177]
D. Peleg. 2000. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied Mathematics.
[178]
J. C. Picard and M. Queyranne. 1982. A network flow solution to some nonlinear 0-1 programming problems, with applications to graph theory. Networks 12, 2 (1982), 141–159.
[179]
M. Potamias, F. Bonchi, A. Gionis, and G. Kollios. 2010. k-nearest neighbors in uncertain graphs. Proc. VLDB Endow. 3, 1 (2010), 997–1008.
[180]
H. Qin, R.H. Li, Y. Yuan, Y. Dai, and G. Wang. 2023. Densest periodic subgraph mining on large temporal graphs. IEEE Trans. Knowl. Data Eng. 35, 11 (2023), 11259–11273.
[181]
P. Raghavendra and D. Steurer. 2010. Graph expansion and the unique games conjecture. In Proceedings of the 42nd Annual ACM Symposium on Theory of Computing (STOC’10). 755–764.
[182]
S. S. Rangapuram, T. Bühler, and M. Hein. 2013. Towards realistic team formation in social networks based on densest subgraphs. In Proceedings of the 22nd International Conference on World Wide Web (WWW’13). 1077–1088.
[183]
S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. 1994. Heuristic and special case algorithms for dispersion problems. Operat. Res. 42, 2 (1994), 299–310.
[184]
A. Reinthal, A. Törnqvist, A. Andersson, E. Norlander, P. Stålhammar, and S. Norlin. 2016. Finding the Densest Common Subgraph with Linear Programming. B.S. thesis. Chalmers University of Technology & University of Gothenburg.
[185]
Y. Ren, H. Zhu, J. Zhang, P. Dai, and L. Bo. 2021. EnsemFDet: An ensemble approach to fraud detection based on bipartite graph. In Proceedings of the 37th IEEE International Conference on Data Engineering (ICDE’21). 2039–2044.
[186]
P. Rozenshtein, A. Anagnostopoulos, A. Gionis, and N. Tatti. 2014. Event detection in activity networks. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’14). 1176–1185.
[187]
P. Rozenshtein, F. Bonchi, A. Gionis, M. Sozio, and N. Tatti. 2019. Finding events in temporal networks: Segmentation meets densest subgraph discovery. Knowl. Inf. Syst. 62, 4 (2019), 1611–1639.
[188]
P. Rozenshtein, G. Preti, A. Gionis, and Y. Velegrakis. 2020. Mining dense subgraphs with similar edges. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD’20). 20–36.
[189]
P. Rozenshtein, N. Tatti, and A. Gionis. 2017. Finding dynamic dense subgraphs. ACM Trans. Knowl. Discov. Data 11, 3 (2017), 1–30.
[190]
A. Saha, X. Ke, A. Khan, and C. Long. 2023. Most probable densest subgraphs. In Proceedings of the 39th IEEE International Conference on Data Engineering (ICDE’23). 1447–1460.
[191]
C. Ma. 2019. Supplementary note for “efficient algorithms for densest subgraph discovery on large directed graphs”. https://i.cs.hku.hk/%7Echma2/sup-sigmod2020.pdf
[192]
B. Saha, A. Hoch, S. Khuller, L. Raschid, and X. N. Zhang. 2010. Dense subgraphs with restrictions and applications to gene annotation graphs. In Proceedings of the 14th Annual International Conference on Research in Computational Molecular Biology (RECOMB’10). 456–472.
[193]
A. E. Sarıyüce, C. Seshadhri, A. Pinar, and U. V. Çatalyürek. 2015. Finding the hierarchy of dense subgraphs using nucleus decompositions. In Proceedings of the 24th International Conference on World Wide Web (WWW’15). 927–937.
[194]
A. E. Sarıyüce, C. Seshadhri, A. Pinar, and U. V. Çatalyürek. 2017. Nucleus decompositions for identifying hierarchy of dense subgraphs. ACM Trans. Web 11, 3 (2017), 16:1–16:27.
[195]
A. E. Sarıyüce and A. Pinar. 2018. Peeling bipartite networks for dense subgraph discovery. In Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM’18). 504–512.
[196]
S. Sawlani and J. Wang. 2020. Near-optimal fully dynamic densest subgraph. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC’20). 181–193.
[197]
S. E. Schaeffer. 2007. Graph clustering. Comput. Sci. Rev. 1, 1 (2007), 27–64.
[198]
A. Schrijver. 2000. A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Combin. Theory Ser. B 80, 2 (2000), 346–355.
[199]
K. Semertzidis, E. Pitoura, E. Terzi, and P. Tsaparas. 2019. Finding lasting dense subgraphs. Data Min. Knowl. Discov. 33, 5 (2019), 1417–1445.
[200]
S. Shahinpour and S. Butenko. 2013. Distance-based clique relaxations in networks: s-clique and s-club. In Models, Algorithms, and Technologies for Network Analysis, B. I. Goldengorin, V. A. Kalyagin, and P. M. Pardalos (Eds.). 149–174.
[201]
J. Shi, L. Dhulipala, and J. Shun. 2021. Parallel clique counting and peeling algorithms. In Proceedings of the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA). 135–146.
[202]
K. Shin, B. Hooi, and C. Faloutsos. 2016. M-zoom: Fast dense-block detection in tensors with quality guarantees. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD’16). 264–280.
[203]
K. Shin, B. Hooi, J. Kim, and C. Faloutsos. 2017. D-cube: Dense-block detection in terabyte-scale tensors. In Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM’17). 681–689.
[204]
K. Shin, B. Hooi, J. Kim, and C. Faloutsos. 2017. DenseAlert: Incremental dense-subtensor detection in tensor streams. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’17). 1057–1066.
[205]
R. Sotirov. 2020. On solving the densest k-subgraph problem on large graphs. Optim. Methods Softw. 35, 6 (2020), 1160–1178.
[206]
M. Sozio and A. Gionis. 2010. The community-search problem and how to plan a successful cocktail party. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’10). 939–948.
[207]
H. H. Su and H. T. Vu. 2020. Distributed dense subgraph detection and low outdegree orientation. In Proceedings of the 34th International Symposium on Distributed Computing (DISC’20). 15:1–15:18.
[208]
I. Sukeda, A. Miyauchi, and A. Takeda. 2023. A study on modularity density maximization: Column generation acceleration and computational complexity analysis. Eur. J. Operat. Res. 309, 2 (2023), 516–528.
[209]
B. Sun, M. Danisch, T.-H. Hubert Chan, and M. Sozio. 2020. KClist++: A simple algorithm for finding k-Clique Densest Subgraphs in Large Graphs. Proc. VLDB Endow. 13, 10 (2020).
[210]
Z. Sun, X. Huang, J. Xu, and F. Bonchi. 2021. Efficient probabilistic truss indexing on uncertain graphs. In Proceedings of the ACM Web Conference 2021 (TheWebConf’21). 354–366.
[211]
R. G. Sundaram, H. Gupta, and C. R. Ramakrishnan. 2021. Efficient distribution of quantum circuits. In Proceedings of the 35th International Symposium on Distributed Computing (DISC’21). 41:1–41:20.
[212]
S. Suri and S. Vassilvitskii. 2011. Counting triangles and the curse of the last reducer. In Proceedings of the 20th International Conference on World Wide Web (WWW’11). 607–614.
[213]
X. Tan, M. Zhou, and B. Fitzgerald. 2020. Scaling open source communities: An empirical study of the linux kernel. In Proceedings of the 42nd International Conference on Software Engineering (ICSE’20). 1222–1234.
[214]
C. E. Tsourakakis. 2015. The k-clique densest subgraph problem. In Proceedings of the 24th International Conference on World Wide Web (WWW’15). 1122–1132.
[215]
C. E. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. A. Tsiarli. 2013. Denser than the densest subgraph: Extracting optimal quasi-cliques with quality guarantees. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’13). 104–112.
[216]
C. E. Tsourakakis, T. Chen, N. Kakimura, and J. Pachocki. 2019. Novel dense subgraph discovery primitives: Risk aversion and exclusion queries. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD’19). 378–394.
[217]
N. Veldt, A. R. Benson, and J. Kleinberg. 2021. The generalized mean densest subgraph problem. In Proceedings of the 27th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’21). 1604–1614.
[218]
N. Veldt, A. R. Benson, and J. Kleinberg. 2022. Hypergraph cuts with general splitting functions. SIAM Rev. 64, 3 (2022), 650–685.
[219]
Q. Wu and J.K. Hao. 2015. A review on algorithms for maximum clique problems. Eur. J. Operat. Res. 242, 3 (2015), 693–709.
[220]
Q. Wu, X. Huang, A. J. Culbreth, J. A. Waltz, L. E. Hong, and S. Chen. 2021. Extracting brain disease-related connectome subgraphs by adaptive dense subgraph discovery. Biometrics 78, 4 (2021), 1566–1578.
[221]
Y. Wu, R. Jin, X. Zhu, and X. Zhang. 2015. Finding dense and connected subgraphs in dual networks. In Proceedings of the 31st IEEE International Conference on Data Engineering (ICDE’15). 915–926.
[222]
Y. Wu, X. Zhu, L. Li, W. Fan, R. Jin, and X. Zhang. 2016. Mining dual networks: Models, algorithms, and applications. ACM Trans. Knowl. Discov. Data 10, 4 (2016), 40:1–40:37.
[223]
T. Xie, Y. Zhang, and D. Song. 2022. Orion: Zero knowledge proof with linear prover time. In Proceedings of the 42nd Annual International Cryptology Conference (CRYPT’22). 299–328.
[224]
H. Yan, Q. Zhang, D. Mao, Z. Lu, D. Guo, and S. Chen. 2021. Anomaly detection of network streams via dense subgraph discovery. In Proceedings of the 30th International Conference on Computer Communications and Networks (ICCCN’21). 1–9.
[225]
H. Yanagisawa and S. Hara. 2018. Discounted average degree density metric and new algorithms for the densest subgraph problem. Networks 71, 1 (2018), 3–15.
[226]
Y. Yang, L. Chu, Y. Zhang, Z. Wang, J. Pei, and E. Chen. 2018. Mining density contrast subgraphs. In Proceedings of the 34th IEEE International Conference on Data Engineering (ICDE’18). 221–232.
[227]
Y. Ye and J. Zhang. 2003. Approximation of dense-\(n/2\)-subgraph and the complement of min-bisection. J. Glob. Optim. 25, 1 (2003), 55–73.
[228]
B. Yikun, L. Xin, H. Ling, D. Yitao, L. Xue, and X. Wei. 2019. No place to hide: Catching fraudulent entities in tensors. In Proceedings of the ACM Web Conference (TheWebConf’19). 83–93.
[229]
P. Zhang and Z. Liu. 2021. Approximating max k-uncut via LP-rounding plus greed, with applications to densest k-subgraph. Theor. Comput. Sci. 849, 6 (2021), 173–183.
[230]
Y. Zhou, S. Hu, and Z. Sheng. 2022. Extracting densest sub-hypergraph with convex edge-weight functions. In Proceedings of the 17th Annual Conference on Theory and Applications of Models of Computation (TAMC’22). 305–321.
[231]
C. X. Zhu, L. L. Lin, P. P. Yuan, and H. Jin. 2022. Discovering cohesive temporal subgraphs with temporal density aware exploration. J. Comput. Sci. Technol. 37, 5 (2022), 1068–1085.
[232]
Z. Zou. 2013. Polynomial-time algorithm for finding densest subgraphs in uncertain graphs. In Proceedings of the 11th Workshop on Mining and Learning with Graphs (MLG’13).

Cited By

View all
  • (2024)Interrelated Dense Pattern Detection in Multilayer NetworksIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.339868336:11(6462-6476)Online publication date: Nov-2024
  • (2024)Fast Multilayer Core Decomposition and Indexing2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00211(2695-2708)Online publication date: 13-May-2024
  • (2024)Jaccard-constrained dense subgraph discoveryMachine Learning10.1007/s10994-024-06595-yOnline publication date: 23-Jul-2024
  • Show More Cited By

Index Terms

  1. A Survey on the Densest Subgraph Problem and its Variants

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Computing Surveys
    ACM Computing Surveys  Volume 56, Issue 8
    August 2024
    963 pages
    EISSN:1557-7341
    DOI:10.1145/3613627
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 30 April 2024
    Online AM: 22 March 2024
    Accepted: 07 March 2024
    Revised: 21 January 2024
    Received: 28 March 2023
    Published in CSUR Volume 56, Issue 8

    Check for updates

    Author Tags

    1. Graphs
    2. density
    3. densest subgraph
    4. approximation algorithms
    5. applications

    Qualifiers

    • Survey

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)619
    • Downloads (Last 6 weeks)120
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Interrelated Dense Pattern Detection in Multilayer NetworksIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.339868336:11(6462-6476)Online publication date: Nov-2024
    • (2024)Fast Multilayer Core Decomposition and Indexing2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00211(2695-2708)Online publication date: 13-May-2024
    • (2024)Jaccard-constrained dense subgraph discoveryMachine Learning10.1007/s10994-024-06595-yOnline publication date: 23-Jul-2024
    • (2024)Convexification techniques for fractional programsMathematical Programming10.1007/s10107-024-02131-xOnline publication date: 16-Aug-2024
    • (2024)Generalized Densest Subgraph in Multiplex NetworksComplex Networks & Their Applications XII10.1007/978-3-031-53472-0_5(49-61)Online publication date: 21-Feb-2024

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    Full Text

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media