LTCC Packaged Ring Oscillator Based Sensor for Evaluation of Cell Proliferation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. The Ring Oscillator Based Sensor Chip
2.3. Data Post Processing
2.4. Sensing Mechanism
2.5. LTCC Package Manufacturing
2.6. Chip Surface Treatment
3. Results
3.1. Cell Testing
3.2. Cell Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Neuži, P.; Giselbrecht, S.; Länge, K.; Huang, T.J.; Manz, A. Revisiting lab-on-a-chip technology for drug discovery. Nat. Rev. Drug Discov. 2012, 11, 620–632. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.-M.; Mak, P.-I.; Law, M.-K.; Martins, R.P. CMOS biosensors for in vitro diagnosis—Transducing mechanisms and applications. Lab Chip 2016, 16, 3664–3681. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.B.; Abshire, P. A fully differential rail-to-rail CMOS capacitance sensor with floating-gate trimming for mismatch compensation. IEEE Trans. Circuits Syst. I 2009, 56, 975–986. [Google Scholar] [CrossRef]
- Nabovati, G.; Ghafar-Zadeh, E.; Mirzaei, M.; Ayala-Charca, G.; Awwad, F.; Sawan, M. A new fully differential CMOS capacitance to digital converter for lab-on-chip applications. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.B.; Abshire, P. Tracking cancer cell proliferation on a CMOS capacitance sensor chip. Biosens. Bioelectron. 2008, 23, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Couniot, N.; Francis, L.A.; Flandre, D. A 16 × 16 CMOS Capacitive Biosensor Array Towards Detection of Single Bacterial Cell. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Luong, J.H.T. On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS). Biotechnol. Prog. 2003, 19, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Chien, J.C.; Niknejad, A.M. Oscillator-Based Reactance Sensors with Injection Locking for High-Throughput Flow Cytometry Using Microwave Dielectric Spectroscopy. IEEE J. Solid-State Circuits 2016, 51, 457–472. [Google Scholar] [CrossRef]
- Couniot, N.; Bol, D.; Poncelet, O.; Francis, L.A.; Flandre, D. A capacitance-to-frequency converter with on-chip passivated microelectrodes for bacteria detection in saline buffers up to 575 MHz. IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 159–163. [Google Scholar] [CrossRef]
- Chien, J.C.; Ameri, A.; Yeh, E.C.; Killilea, A.N.; Anwar, M.; Niknejad, A.M. A high-throughput flow cytometry-on-a-CMOS platform for single-cell dielectric spectroscopy at microwave frequencies. Lab Chip 2018, 18, 2065–2076. [Google Scholar] [CrossRef] [PubMed]
- Mitsunaka, T.; Sato, D.; Ashida, N.; Saito, A.; Iizuka, K.; Suzuki, T.; Ogawa, Y.; Fujishima, M. CMOS Biosensor IC Focusing on Dielectric Relaxations of Biological Water with 120 and 60 GHz Oscillator Arrays. IEEE J. Solid-State Circuits 2016, 51, 2534–2543. [Google Scholar] [CrossRef]
- Wang, H.; Mahdavi, A.; Tirrell, D.A.; Hajimiri, A. A magnetic cell-based sensor. Lab Chip 2012, 12, 4465–4471. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Grijalva, S.I.; Aziz, M.K.; Chi, T.; Li, S.; Sayegh, M.N.; Wang, A.; Cho, H.C.; Wang, H. Multi-parametric cell profiling with a CMOS quad-modality cellular interfacing array for label-free fully automated drug screening. Lab Chip 2018, 18, 3037–3050. [Google Scholar] [CrossRef] [PubMed]
- Su, K.; Zhou, J.; Zou, L.; Wang, T.; Zhuang, L.; Hu, N.; Wang, P. Integrated multifunctional cell-based biosensor system for monitoring extracellular acidification and cellular growth. Sens. Actuators A Phys. 2014, 220, 144–152. [Google Scholar] [CrossRef]
- Datta-Chaudhuri, T.; Abshire, P.; Smela, E. Packaging commercial CMOS chips for lab on a chip integration. Lab Chip 2014, 14, 1753–1766. [Google Scholar] [CrossRef] [PubMed]
- Jacq, C.; Maeder, T.; Ryser, P. Sensors and packages based on LTCC and thick-film technology for severe conditions. Sadhana Acad. Proc. Eng. Sci. 2009, 34, 677–687. [Google Scholar] [CrossRef] [Green Version]
- Vasudev, A.; Kaushik, A.; Jones, K.; Bhansali, S. Prospects of low temperature co-fired ceramic (LTCC) based microfluidic systems for point-of-care biosensing and environmental sensing. Microfluid. Nanofluid. 2013, 14, 683–702. [Google Scholar] [CrossRef]
- Bartsch, H.; Welker, T.; Welker, K.; Witte, H.; Müller, J. LTCC based bioreactors for cell cultivation. IOP Conf. Ser. Mater. Sci. Eng. 2016, 104, 12001. [Google Scholar] [CrossRef] [Green Version]
- Ciosek, P.; Zawadzki, K.; Łopacińska, J.; Skolimowski, M.; Bembnowicz, P.; Golonka, L.J.; Brzózka, Z.; Wróblewski, W. Monitoring of cell cultures with LTCC microelectrode array. Anal. Bioanal. Chem. 2009, 393, 2029–2038. [Google Scholar] [CrossRef] [PubMed]
- Imanaka, Y. Multilayered Low Temperature Cofired Ceramics (LTCC) Technology; Springer Science & Business Media: New York, NY, USA, 2005; ISBN 0387231307. [Google Scholar]
- Wang, W.; Foley, K.; Shan, X.; Wang, S.; Eaton, S.; Nagaraj, V.J.; Wiktor, P.; Patel, U.; Tao, N. Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy. Nat. Chem. 2011, 3, 251–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, A.; Wang, L.; Jensen, E.; Mathies, R.; Boser, B. Modular integration of electronics and microfluidic systems using flexible printed circuit boards. Lab Chip 2010, 10, 519–521. [Google Scholar] [CrossRef] [PubMed]
- Huys, R.; Braeken, D.; Jans, D.; Stassen, A.; Collaert, N.; Wouters, J.; Loo, J.; Severi, S.; Vleugels, F.; Callewaert, G.; et al. Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip. Lab Chip 2012, 12, 1274. [Google Scholar] [CrossRef] [PubMed]
- Halonen, N.; Kilpijärvi, J.; Sobocinski, M.; Datta-Chaudhuri, T.; Hassinen, A.; Prakash, S.B.; Möller, P.; Abshire, P.; Smela, E.; Kellokumpu, S.; et al. Low temperature co-fired ceramic package for lab-on-CMOS applied in cell viability monitoring. Proc. Eng. 2015, 120, 1079–1082. [Google Scholar] [CrossRef]
- Halonen, N.; Kilpijärvi, J.; Sobocinski, M.; Datta-Chaudhuri, T.; Hassinen, A.; Prakash, S.B.; Möller, P.; Abshire, P.; Kellokumpu, S.; Spetz, A.L. Low temperature co-fired ceramic packaging of CMOS capacitive sensor chip towards cell viability monitoring. Beilstein J. Nanotechnol. 2016, 7, 1871. [Google Scholar] [CrossRef] [PubMed]
- Naviasky, E.; Datta-Chaudhuri, T.; Abshire, P. High resolution capacitance sensor array for real-time monitoring of cell viability. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne VIC, Australia, 1–5 June 2014; pp. 634–637. [Google Scholar] [CrossRef]
- Bathiya, S.; Castro, A.; Dandin, M.; Smela, E.; Abshire, P. Lab-on-CMOS capacitance sensor array for real-time cell viability measurements with I2C readout. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016. [Google Scholar]
- Senevirathna, B.; Lu, S.; Abshire, P. Characterization of a High Dynamic Range Lab-on-CMOS Capacitance Sensor Array. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 8–31 May 2017. [Google Scholar]
- OriginLab—The Percentile Filter Method. Available online: https://www.originlab.com/doc/Origin-Help/Smooth-Algorithm (accessed on 1 March 2018).
- Fink, S.L.; Cookson, B.T. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 2005, 73, 1907–1916. [Google Scholar] [CrossRef] [PubMed]
- Bayliss, S.C.; Harris, P.J. Nature of the Silicon-Animal Cell Interface. J. Porous Mater. 2000, 7, 191–195. [Google Scholar] [CrossRef]
- Gustavsson, J.; Altankov, G.; Errachid, A.; Samitier, J.; Planell, J.A.; Engel, E. Surface modifications of silicon nitride for cellular biosensor applications. J. Mater. Sci. Mater. Med. 2008, 19, 1839–1850. [Google Scholar] [CrossRef] [PubMed]
- Hierlemann, A.; Frey, U.; Hafizovic, S.; Heer, F. Growing cells atop microelectronic chips: Interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays. Proc. IEEE 2011, 99, 252–284. [Google Scholar] [CrossRef]
- Medina Benavente, J.J.; Mogami, H.; Sakurai, T.; Sawada, K. Evaluation of silicon nitride as a substrate for culture of PC12 cells: An interfacial model for functional studies in neurons. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Sitterley, G. Poly-L-Lysine Cell Attachment Protocol. BioFiles 2008, 3, 8. [Google Scholar]
- Sliz, R.; Suzuki, Y.; Nathan, A.; Myllylä, R.; Jabbour, G.E. Organic solvent wetting properties of UV and plasma treated ZnO nanorods: Printed electronics approach. In Oraganic Photovolataics XIII; SPIE: Bellingham, WA, USA, 2012. [Google Scholar]
- Bembnowicz, P.; Nowakowska, D.; Golonka, L.J. Integrated LTCC chamber with optical ports and thermal control elements. In Proceedings of the 32nd International Spring Seminar on Electronics Technology, Brno, Czech Republic, 13–17 May 2009. [Google Scholar]
- Bembnowicz, P.; Golonka, L.J. Integration of transparent glass window with LTCC technology for μTAS application. J. Eur. Ceram. Soc. 2010, 30, 743–749. [Google Scholar] [CrossRef]
Sensor Number | Cell Count | Frequency Change (ΔHz) |
---|---|---|
1 | 5 cells, 3 on center | 7.72 × 105 |
2 | 4 cells on the edge | 8.30 × 105 |
3 | 4 cells on the edge | 7.37 × 105 |
4 | 4 cells on the edge | 7.51 × 105 |
5 | 4 cells, 2 on center | Removed (see Section 3.2) |
6 | 4 cells on the edge | 6.84 × 105 |
7 | covered in cells | 7.58 × 105 |
8 | 2 cells on the edge | 5.66 × 105 |
9 | 3 cells on the edge | 5.90 × 105 |
10 | 3 cells on the edge | 5.37 × 105 |
11 | covered in cells | 9.58 × 105 |
12 | 1 cell on center, 1 on the edge | 5.18 × 105 |
13 | 4 cells on the edge | 5.66 × 105 |
14 | 4 cells, 3 on center | 6.51 × 105 |
15 | 2 cells on the edge | 4.71 × 105 |
16 | covered in cells | 7.58 × 105 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilpijärvi, J.; Halonen, N.; Sobocinski, M.; Hassinen, A.; Senevirathna, B.; Uvdal, K.; Abshire, P.; Smela, E.; Kellokumpu, S.; Juuti, J.; et al. LTCC Packaged Ring Oscillator Based Sensor for Evaluation of Cell Proliferation. Sensors 2018, 18, 3346. https://doi.org/10.3390/s18103346
Kilpijärvi J, Halonen N, Sobocinski M, Hassinen A, Senevirathna B, Uvdal K, Abshire P, Smela E, Kellokumpu S, Juuti J, et al. LTCC Packaged Ring Oscillator Based Sensor for Evaluation of Cell Proliferation. Sensors. 2018; 18(10):3346. https://doi.org/10.3390/s18103346
Chicago/Turabian StyleKilpijärvi, Joni, Niina Halonen, Maciej Sobocinski, Antti Hassinen, Bathiya Senevirathna, Kajsa Uvdal, Pamela Abshire, Elisabeth Smela, Sakari Kellokumpu, Jari Juuti, and et al. 2018. "LTCC Packaged Ring Oscillator Based Sensor for Evaluation of Cell Proliferation" Sensors 18, no. 10: 3346. https://doi.org/10.3390/s18103346
APA StyleKilpijärvi, J., Halonen, N., Sobocinski, M., Hassinen, A., Senevirathna, B., Uvdal, K., Abshire, P., Smela, E., Kellokumpu, S., Juuti, J., & Lloyd Spetz, A. (2018). LTCC Packaged Ring Oscillator Based Sensor for Evaluation of Cell Proliferation. Sensors, 18(10), 3346. https://doi.org/10.3390/s18103346