1153 results sorted by ID
Post-Quantum Stealth Address Protocols
Marija Mikić, Mihajlo Srbakoski, Strahinja Praška
Cryptographic protocols
The Stealth Address Protocol (SAP) allows users to receive assets through stealth addresses that are unlinkable to their stealth meta-addresses. The most widely used SAP, Dual-Key SAP (DKSAP), and the most performant SAP, Elliptic Curve Pairing Dual-Key SAP (ECPDKSAP), are based on elliptic curve cryptography, which is vulnerable to quantum attacks. These protocols depend on the elliptic curve discrete logarithm problem, which could be efficiently solved on a sufficiently powerful quantum...
Available Attestation: Towards a Reorg-Resilient Solution for Ethereum Proof-of-Stake
Mingfei Zhang, Rujia Li, Xueqian Lu, Sisi Duan
Cryptographic protocols
Ethereum transitioned from Proof-of-Work consensus to Proof-of-Stake (PoS) consensus in September 2022. While this upgrade brings significant improvements (e.g., lower energy costs and higher throughput), it also introduces new vulnerabilities. One notable example is the so-called malicious \textit{reorganization attack}. Malicious reorganization denotes an attack in which the Byzantine faulty validators intentionally manipulate the canonical chain so the blocks by honest validators are...
poqeth: Efficient, post-quantum signature verification on Ethereum
Ruslan Kysil, István András Seres, Péter Kutas, Nándor Kelecsényi
Implementation
This work explores the application and efficient deployment of (standardized) post-quantum (PQ) digital signature algorithms in the blockchain environment. Specifically, we implement and evaluate four PQ signatures in the Ethereum Virtual Machine: W-OTS$^{+}$, XMSS, SPHINCS+, and MAYO. We focus on optimizing the gas costs of the verification algorithms as that is the signature schemes' only algorithm executed on-chain, thus incurring financial costs (transaction fees) for the users. Hence,...
Recover from Excessive Faults in Partially-Synchronous BFT SMR
Tiantian Gong, Gustavo Franco Camilo, Kartik Nayak, Andrew Lewis-Pye, Aniket Kate
Cryptographic protocols
Byzantine fault-tolerant (BFT) state machine replication (SMR) protocols form the basis of modern blockchains as they maintain a consistent state across all blockchain nodes while tolerating a bounded number of Byzantine faults. We analyze BFT SMR in the excessive fault setting where the actual number of Byzantine faults surpasses a protocol's tolerance.
We start by devising the very first repair algorithm for linearly chained and quorum-based partially synchronous SMR to recover from...
Meet-in-the-Middle Attack on Primitives with Binary Matrix Linear Layer
Qingliang Hou, Kuntong Li, Guoyan Zhang, Yanzhao Shen, Qidi You, Xiaoyang Dong
Attacks and cryptanalysis
Meet-in-the-middle (MitM) is a powerful approach for the cryptanalysis of symmetric primitives. In recent years, MitM has led to many improved records about key recovery, preimage and collision attacks with the help of automated tools. However, most of the previous work target $\texttt{AES}$-like hashing where the linear layer is an MDS matrix. And we observe that their automatic model for MDS matrix is not suitable for primitives using a binary matrix as their linear layer.
In this...
Shielded CSV: Private and Efficient Client-Side Validation
Jonas Nick, Liam Eagen, Robin Linus
Applications
Cryptocurrencies allow mutually distrusting users to transact monetary value over the internet without relying on a trusted third party.
Bitcoin, the first cryptocurrency, achieved this through a novel protocol used to establish consensus about an ordered transaction history.
This requires every transaction to be broadcasted and verified by the network, incurring communication and computational costs.
Furthermore, transactions are visible to all nodes of the network, eroding privacy,...
Constant latency and finality for dynamically available DAG
Hans Schmiedel, Runchao Han, Qiang Tang, Ron Steinfeld, Jiangshan Yu
Cryptographic protocols
Directed Acyclic Graph (DAG) based protocols have shown great promise to improve the performance of blockchains. The CAP theorem shows that it is impossible to have a single system that achieves both liveness (known as dynamic availability) and safety under network partition.This paper explores two types of DAG-based protocols prioritizing liveness or safety, named structured dissemination and Graded Common Prefix (GCP), respectively.
For the former, we introduce the first...
SoK: Trusted setups for powers-of-tau strings
Faxing Wang, Shaanan Cohney, Joseph Bonneau
Applications
Many cryptographic protocols rely upon an initial \emph{trusted setup} to generate public parameters. While the concept is decades old, trusted setups have gained prominence with the advent of blockchain applications utilizing zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs), many of which rely on a ``powers-of-tau'' setup. Because such setups feature a dangerous trapdoor which undermines security if leaked, multiparty protocols are used to prevent the trapdoor...
Fair Signature Exchange
Hossein Hafezi, Aditi Partap, Sourav Das, Joseph Bonneau
Cryptographic protocols
We introduce the concept of Fair Signature Exchange (FSE). FSE enables a client to obtain signatures on multiple messages in a fair manner: the client receives all signatures if and only if the signer receives an agreed-upon payment. We formalize security definitions for FSE and present a practical construction based on the Schnorr signature scheme, avoiding computationally expensive cryptographic primitives such as SNARKs. Our scheme imposes minimal overhead on the Schnorr signer and...
Trustless Bridges via Random Sampling Light Clients
Bhargav Nagaraja Bhatt, Fatemeh Shirazi, Alistair Stewart
Cryptographic protocols
The increasing number of blockchain projects introduced annually has led to a pressing need for secure and efficient interoperability solutions. Currently, the lack of such solutions forces end-users to rely on centralized intermediaries, contradicting the core principle of decentralization and trust minimization in blockchain technology. In this paper, we propose a decentralized and efficient interoperability solution (aka Bridge Protocol) that operates without additional trust assumptions,...
Cryptojacking detection using local interpretable model-agnostic explanations
Elodie Ngoie Mutombo, Mike Wa Nkongolo, Mahmut Tokmak
Attacks and cryptanalysis
Cryptojacking, the unauthorised use of computing resources to mine cryptocurrency, has emerged as a critical threat in today’s digital landscape. These attacks not only compromise system integrity but also result in increased costs, reduced hardware lifespan, and heightened network security risks. Early and accurate detection is essential to mitigate the adverse effects of cryptojacking. This study focuses on developing a semi-supervised machine learning (ML) approach that leverages an...
Cauchyproofs: Batch-Updatable Vector Commitment with Easy Aggregation and Application to Stateless Blockchains
Zhongtang Luo, Yanxue Jia, Alejandra Victoria Ospina Gracia, Aniket Kate
Cryptographic protocols
Stateless blockchain designs have emerged to address the challenge of growing blockchain size using succinct global states. Previous works have developed vector commitments that support proof updates and aggregation to be used as such states. However, maintaining proofs for multiple users still demands significant computational resources, particularly to update proofs with every transaction. This paper introduces Cauchyproofs, a batch-updatable vector commitment that enables proof-serving...
Forking the RANDAO: Manipulating Ethereum's Distributed Randomness Beacon
Ábel Nagy, János Tapolcai, István András Seres, Bence Ladóczki
Applications
Proof-of-stake consensus protocols often rely on distributed randomness beacons (DRBs) to generate randomness for leader selection. This work analyses the manipulability of Ethereum's DRB implementation, RANDAO, in its current consensus mechanism. Even with its efficiency, RANDAO remains vulnerable to manipulation through the deliberate omission of blocks from the canonical chain. Previous research has shown that economically rational players can withhold blocks --~known as a block...
Extending Groth16 for Disjunctive Statements
Xudong Zhu, Xinxuan Zhang, Xuyang Song, Yi Deng, Yuanju Wei, Liuyu Yang
Cryptographic protocols
Two most common ways to design non-interactive zero knowledge (NIZK) proofs are based on Sigma ($\Sigma$)-protocols (an efficient way to prove algebraic statements) and zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARK) protocols (an efficient way to prove arithmetic statements). However, in the applications of cryptocurrencies such as privacy-preserving credentials, privacy-preserving audits, and blockchain-based voting systems, the zk-SNARKs for general statements...
Foundations of Platform-Assisted Auctions
Hao Chung, Ke Wu, Elaine Shi
Foundations
Today, many auctions are carried out with the help of intermediary platforms like Google and eBay. These platforms serve as a rendezvous point for the buyers and sellers, and charge a fee for its service. We refer to such auctions as platform-assisted auctions. Traditionally, the auction theory literature mainly focuses on designing auctions that incentivize the buyers to bid truthfully, assuming that the platform always faithfully implements the auction. In practice, however, the platforms...
Dynamically Available Common Subset
Yuval Efron, Ertem Nusret Tas
Cryptographic protocols
Internet-scale consensus protocols used by blockchains are designed to remain operational in the presence of unexpected temporary crash faults (the so-called sleepy model of consensus) -- a critical feature for the latency-sensitive financial applications running on these systems.
However, their leader-based architecture, where a single block proposer is responsible for creating the block at each height, makes them vulnerable to short-term censorship attacks, in which the proposers profit...
MicroNova: Folding-based arguments with efficient (on-chain) verification
Jiaxing Zhao, Srinath Setty, Weidong Cui
Foundations
We describe the design and implementation of MicroNova, a folding-based recursive argument for producing proofs of incremental computations of the form $y = F^{(\ell)}(x)$, where $F$ is a possibly non-deterministic computation (encoded using a constraint system such as R1CS), $x$ is the initial input, $y$ is the output, and $\ell > 0$. The proof of an $\ell$-step computation is produced step-by-step such that the proof size nor the time to verify it depends on $\ell$. The proof at the final...
NMFT: A Copyrighted Data Trading Protocol based on NFT and AI-powered Merkle Feature Tree
Dongming Zhang, Lei Xie, Yu Tao
Cryptographic protocols
With the rapid growth of blockchain-based Non-Fungible Tokens (NFTs), data trading has evolved to incorporate NFTs for ownership verification. However, the NFT ecosystem faces significant challenges in copyright protection, particularly when malicious buyers slightly modify the purchased data and re-mint it as a new NFT, infringing upon the original owner's rights. In this paper, we propose a copyright-preserving data trading protocol to address this challenge.
First, we introduce the...
BitVM: Quasi-Turing Complete Computation on Bitcoin
Lukas Aumayr, Zeta Avarikioti, Robin Linus, Matteo Maffei, Andrea Pelosi, Christos Stefo, Alexei Zamyatin
Cryptographic protocols
A long-standing question in the blockchain community is which class of computations are efficiently expressible in cryptocurrencies with limited scripting languages, such as Bitcoin Script. Such languages expose a reduced trusted computing base, thereby being less prone to hacks and vulnerabilities, but have long been believed to support only limited classes of payments.
In this work, we confute this long-standing belief by showing for the first time that arbitrary computations can be...
Shutter Network: Private Transactions from Threshold Cryptography
Stefan Dziembowski, Sebastian Faust, Jannik Luhn
Applications
With the emergence of DeFi, attacks based on re-ordering transactions have become an essential problem for public blockchains. Such attacks include front-running or sandwiching transactions, where the adversary places transactions at a particular place within a block to influence a financial asset’s market price. In the Ethereum space, the value extracted by such attacks is often referred to as miner/maximal extractable value (MEV), which to date is estimated to have reached a value of more...
SoK: Privacy-Preserving Transactions in Blockchains
Foteini Baldimtsi, Kostas Kryptos Chalkias, Varun Madathil, Arnab Roy
Cryptographic protocols
Ensuring transaction privacy in blockchain systems is essential to safeguard user data and financial activity from exposure on public ledgers. This paper conducts a systematization of knowledge (SoK) on privacy-preserving techniques in cryptocurrencies with native privacy features. We define and compare privacy notions such as confidentiality, k-anonymity, full anonymity, and sender-receiver unlinkability, and categorize the cryptographic techniques employed to achieve these guarantees. Our...
Algebraic Zero Knowledge Contingent Payment
Javier Gomez-Martinez, Dimitrios Vasilopoulos, Pedro Moreno-Sanchez, Dario Fiore
Cryptographic protocols
In this work, we introduce Modular Algebraic Proof Contingent Payment (MAPCP), a novel zero-knowledge contingent payment (ZKCP) construction. Unlike previous approaches, MAPCP is the first that simultaneously avoids using zk-SNARKs as the tool for zero-knowledge proofs and HTLC contracts to atomically exchange a secret for a payment. As a result, MAPCP sidesteps the common reference string (crs) creation problem and is compatible with virtually any cryptocurrency, even those with limited or...
EndGame: Field-Agnostic Succinct Blockchain with Arc
Simon Judd, GPT
Cryptographic protocols
We present EndGame, a novel blockchain architecture that achieves succinctness through Reed-Solomon accumulation schemes. Our construction enables constant-time verification of blockchain state while maintaining strong security properties. We demonstrate how to efficiently encode blockchain state transitions using Reed-Solomon codes and accumulate proofs of state validity using the ARC framework. Our protocol achieves optimal light client verification costs and supports efficient state...
Decentralized FHE Computer
Gurgen Arakelov, Sergey Gomenyuk, Hovsep Papoyan
Implementation
The concept of a decentralized computer is a powerful and transformative idea that has proven its significance in enabling trustless, distributed computations. However, its application has been severely constrained by an inability to handle private data due to the inherent transparency of blockchain systems. This limitation restricts the scope of use cases, particularly in domains where confidentiality is critical.
In this work, we introduce a model for a Fully Homomorphic Encryption...
Shardora: Towards Scaling Blockchain Sharding via Unleashing Parallelism
Yu Tao, Lu Zhou, Lei Xie, Dongming Zhang, Xinyu Lei, Fei Xu, Zhe Liu
Cryptographic protocols
Sharding emerges as a promising solution to enhance blockchain scalability. However, it faces two critical limitations during shard reconfiguration: (1) the TPS-Degradation issue, arising from ledger synchronization conflicts during transaction processing, and (2) the Zero-TPS issue, caused by disruptions in transaction processing due to key negotiation. To this end, we propose Shardora, a blockchain sharding system for scaling blockchain by unleashing parallelism. In Shardora, we implement...
Age-aware Fairness in Blockchain Transaction Ordering for Reducing Tail Latency
Yaakov Sokolik, Mohammad Nassar, Ori Rottenstriech
Cryptographic protocols
In blockchain networks, transaction latency is crucial for determining the quality of service (QoS). The latency of a transaction is measured as the time between its issuance and its inclusion in a block in the chain. A block proposer often prioritizes transactions with higher fees or transactions from accounts it is associated with, to minimize their latencies. To maintain fairness among transactions, a block proposer is expected to select the included transactions randomly. The random...
Carbon Footprint Traction System Incorporated as Blockchain
Umut Pekel, Oguz Yayla
Applications
This article tries to offer a solution to an environmental sustainability problem using a forward-thinking approach and tries to construct a carbon footprint tracking system based on blockchain technology while also introducing tokenization intertwined with the blockchain to make everyday use as accessible and effective as possible.
This effort aims to provide a solid use case for environmental sustainability and lays the groundwork of a new generation social construct where carbon...
BatchZK: A Fully Pipelined GPU-Accelerated System for Batch Generation of Zero-Knowledge Proofs
Tao Lu, Yuxun Chen, Zonghui Wang, Xiaohang Wang, Wenzhi Chen, Jiaheng Zhang
Implementation
Zero-knowledge proof (ZKP) is a cryptographic primitive that enables one party to prove the validity of a statement to other parties without disclosing any secret information. With its widespread adoption in applications such as blockchain and verifiable machine learning, the demand for generating zero-knowledge proofs has increased dramatically. In recent years, considerable efforts have been directed toward developing GPU-accelerated systems for proof generation. However, these previous...
Scutum: Temporal Verification for Cross-Rollup Bridges via Goal-Driven Reduction
Yanju Chen, Juson Xia, Bo Wen, Kyle Charbonnet, Hongbo Wen, Hanzhi Liu, Luke Pearson, Yu Feng
Implementation
Scalability remains a key challenge for blockchain adoption. Rollups—especially zero-knowledge (ZK) and optimistic rollups—address this by processing transactions off-chain while maintaining Ethereum’s security, thus reducing gas fees and improving speeds. Cross-rollup bridges like Orbiter Finance enable seamless asset transfers across various Layer 2 (L2) rollups and between L2 and Layer 1 (L1) chains. However, the increasing reliance on these bridges raises significant security concerns,...
A Tight Analysis of GHOST Consistency
Peter Gaži, Zahra Motaqy, Alexander Russell
Cryptographic protocols
The GHOST protocol has been proposed as an improvement to the Nakamoto consensus mechanism that underlies Bitcoin. In contrast to the Nakamoto fork-choice rule, the GHOST rule justifies selection of a chain with weights computed over subtrees rather than individual paths. This mechanism has been adopted by a variety of consensus protocols, and is a part of the currently deployed protocol supporting Ethereum.
We establish an exact characterization of the security region of the GHOST...
A Composability Treatment of Bitcoin's Transaction Ledger with Variable Difficulty
Juan Garay, Yun Lu, Julien Prat, Brady Testa, Vassilis Zikas
Cryptographic protocols
As the first proof-of-work (PoW) permissionless blockchain, Bitcoin aims at maintaining a decentralized yet consistent transaction ledger as protocol participants (“miners”) join and leave as they please. This is achieved by means of a subtle PoW difficulty adjustment mechanism that adapts to the perceived block generation rate, and important steps have been taken in previous work to provide a rigorous analysis of the conditions (such as bounds on dynamic participation) that are sufficient...
Foundations of Adaptor Signatures
Paul Gerhart, Dominique Schröder, Pratik Soni, Sri AravindaKrishnan Thyagarajan
Applications
Adaptor signatures extend the functionality of regular signatures through the computation of pre-signatures on messages for statements of NP relations. Pre-signatures are publicly verifiable; they simultaneously hide and commit to a signature of an underlying signature scheme on that message. Anybody possessing a corresponding witness for the statement can adapt the pre-signature to obtain the "regular" signature. Adaptor signatures have found numerous applications for conditional payments...
Siniel: Distributed Privacy-Preserving zkSNARK
Yunbo Yang, Yuejia Cheng, Kailun Wang, Xiaoguo Li, Jianfei Sun, Jiachen Shen, Xiaolei Dong, Zhenfu Cao, Guomin Yang, Robert H. Deng
Zero-knowledge Succinct Non-interactive Argument of Knowledge (zkSNARK) is a powerful cryptographic primitive, in which a prover convinces a verifier that a given statement is true without leaking any additional information. However, existing zkSNARKs suffer from high computation overhead in the proof generation. This limits the applications of zkSNARKs, such as private payments, private smart contracts, and anonymous credentials. Private delegation has become a prominent way to accelerate...
FLock: Robust and Privacy-Preserving Federated Learning based on Practical Blockchain State Channels
Ruonan Chen, Ye Dong, Yizhong Liu, Tingyu Fan, Dawei Li, Zhenyu Guan, Jianwei Liu, Jianying Zhou
Applications
\textit{Federated Learning} (FL) is a distributed machine learning paradigm that allows multiple clients to train models collaboratively without sharing local data. Numerous works have explored security and privacy protection in FL, as well as its integration with blockchain technology. However, existing FL works still face critical issues. \romannumeral1) It is difficult to achieving \textit{poisoning robustness} and \textit{data privacy} while ensuring high \textit{model accuracy}....
How Much Public Randomness Do Modern Consensus Protocols Need?
Joseph Bonneau, Benedikt Bünz, Miranda Christ, Yuval Efron
Cryptographic protocols
Modern blockchain-based consensus protocols
aim for efficiency (i.e., low communication and round complexity) while maintaining security against adaptive adversaries.
These goals are usually achieved using a public randomness beacon to select roles for each participant. We examine to what extent this randomness is necessary.
Specifically, we provide tight bounds on the amount of entropy a Byzantine Agreement protocol must consume from a beacon in order to enjoy efficiency and adaptive...
zkMarket : Privacy-preserving Digital Data Trade System via Blockchain
Seungwoo Kim, Semin Han, Seongho Park, Kyeongtae Lee, Jihye Kim, Hyunok Oh
Applications
In this paper, we introduce zkMarket, a privacy-preserving fair trade system on the blockchain. zkMarket addresses the challenges of transaction privacy and computational efficiency. To ensure transaction privacy, zkMarket is built upon an anonymous transfer protocol. By combining encryption with zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARK), both the seller and the buyer are enabled to trade fairly. Furthermore, by encrypting the decryption key, we make the data...
Universal Adaptor Signatures from Blackbox Multi-Party Computation
Michele Ciampi, Xiangyu Liu, Ioannis Tzannetos, Vassilis Zikas
Public-key cryptography
Adaptor signatures (AS) extend the functionality of traditional digital signatures by enabling the generation of a pre-signature tied to an instance of a hard NP relation, which can later be turned (adapted) into a full signature upon revealing a corresponding witness. The recent work by Liu et al. [ASIACRYPT 2024] devised a generic AS scheme that can be used for any NP relation---which here we will refer to as universal adaptor signatures scheme, in short UAS---from any one-way function....
Push-Button Verification for BitVM Implementations
Hanzhi Liu, Jingyu Ke, Hongbo Wen, Luke Pearson, Robin Linus, Lukas George, Manish Bista, Hakan Karakuş, Domo, Junrui Liu, Yanju Chen, Yu Feng
Implementation
Bitcoin, while being the most prominent blockchain with the largest market capitalization, suffers from scalability and throughput limitations that impede the development of ecosystem projects like Bitcoin Decentralized Finance (BTCFi). Recent advancements in BitVM propose a promising Layer 2 (L2) solution to enhance Bitcoin's scalability by enabling complex computations off-chain with on-chain verification. However, Bitcoin's constrained programming environment—characterized by its...
From One-Time to Two-Round Reusable Multi-Signatures without Nested Forking
Lior Rotem, Gil Segev, Eylon Yogev
Foundations
Multi-signature schemes are gaining significant interest due to their blockchain applications. Of particular interest are two-round schemes in the plain public-key model that offer key aggregation, and whose security is based on the hardness of the DLOG problem. Unfortunately, despite substantial recent progress, the security proofs of the proposed schemes provide rather insufficient concrete guarantees (especially for 256-bit groups). This frustrating situation has so far been approached...
Sunfish: Reading Ledgers with Sparse Nodes
Giulia Scaffino, Karl Wüst, Deepak Maram, Alberto Sonnino, Lefteris Kokoris-Kogias
Cryptographic protocols
The increased throughput offered by modern blockchains, such as Sui, Aptos, and Solana, enables processing thousands of transactions per second, but it also introduces higher costs for decentralized application (dApp) developers who need to track and verify changes in the state of their application. This is true because dApp developers run full nodes, which download and re-execute every transaction to track the global state of the chain. However, this becomes prohibitively expensive for...
Overlapped Bootstrapping for FHEW/TFHE and Its Application to SHA3
Deokhwa Hong, Youngjin Choi, Yongwoo Lee, Young-Sik Kim
Implementation
Homomorphic Encryption (HE) enables operations on encrypted data without requiring decryption, thus allowing for secure handling of confidential data within smart contracts. Among the known HE schemes, FHEW and TFHE are particularly notable for use in smart contracts due to their lightweight nature and support for arbitrary logical gates. In contrast, other HE schemes often require several gigabytes of keys and are limited to supporting only addition and multiplication. As a result, there...
Consensus on SNARK pre-processed circuit polynomials
Jehyuk Jang
Applications
This paper addresses verifiable consensus of pre-processed circuit polynomials for succinct non-interactive argument of knowledge (SNARK). More specifically, we focus on parts of circuits, referred to as wire maps, which may change based on program inputs or statements being argued. Preparing commitments to wire maps in advance is essential for certain SNARK protocols to maintain their succinctness, but it can be costly. SNARK verifiers can alternatively consider receiving wire maps from an...
Transaction Execution Mechanisms
Abdoulaye Ndiaye
This paper studies transaction execution mechanisms (TEMs) for blockchains, as the efficient resource allocation across multiple parallel executions queues or "local fee markets." We present a model considering capacity constraints, user valuations, and delay costs in a multi-queue system with an aggregate capacity constraint due to global consensus. We show that revenue maximization tends to allocate capacity to the highest-paying queue, while welfare maximization generally serves all...
Optimizing Liveness for Blockchain-Based Sealed-Bid Auctions in Rational Settings
Maozhou Huang, Xiangyu Su, Mario Larangeira, Keisuke Tanaka
Cryptographic protocols
Blockchain-based auction markets offer stronger fairness and transparency compared to their centralized counterparts. Deposits and sealed bid formats are usually applied to enhance security and privacy. However, to our best knowledge, the formal treatment of deposit-enabled sealed-bid auctions remains lacking in the cryptographic literature. To address this gap, we first propose a decentralized anonymous deposited-bidding (DADB) scheme, providing formal syntax and security definitions....
Secret Sharing with Snitching
Stefan Dziembowski, Sebastian Faust, Tomasz Lizurej, Marcin Mielniczuk
Foundations
We address the problem of detecting and punishing shareholder collusion in secret-sharing schemes. We do it in the recently proposed cryptographic model called individual cryptography (Dziembowski, Faust, and Lizurej, Crypto 2023), which assumes that there exist tasks that can be efficiently computed by a single machine but distributing this computation across multiple (mutually distrustful devices) is infeasible.
Within this model, we introduce a novel primitive called secret sharing...
Efficiently-Thresholdizable Batched Identity Based Encryption, with Applications
Amit Agarwal, Rex Fernando, Benny Pinkas
Cryptographic protocols
We propose a new cryptographic primitive called "batched identity-based encryption" (Batched IBE) and its thresholdized version. The new primitive allows encrypting messages with specific identities and batch labels, where the latter can represent, for example, a block number on a blockchain. Given an arbitrary subset of identities for a particular batch, our primitive enables efficient issuance of a single decryption key that can be used to decrypt all ciphertexts having identities that are...
OML: Open, Monetizable, and Loyal AI
Zerui Cheng, Edoardo Contente, Ben Finch, Oleg Golev, Jonathan Hayase, Andrew Miller, Niusha Moshrefi, Anshul Nasery, Sandeep Nailwal, Sewoong Oh, Himanshu Tyagi, Pramod Viswanath
Applications
Artificial Intelligence (AI) has steadily improved across a wide range of tasks, and a significant breakthrough towards general intelligence was achieved with the rise of generative deep models, which have garnered worldwide attention. However, the development and deployment of AI are almost entirely controlled by a few powerful organizations and individuals who are racing to create Artificial General Intelligence (AGI). These centralized entities make decisions with little public oversight,...
PoUDR: Proof of Unified Data Retrieval in Decentralized Storage Networks
Zonglun Li, Shuhao Zheng, Junliang Luo, Ziyue Xin, Dun Yuan, Shang Gao, Sichao Yang, Bin Xiao, Xue Liu
Applications
Decentralized storage networks, including IPFS and Filecoin, have created a marketplace where individuals exchange storage space for profit. These networks employ protocols that reliably ensure data storage providers accurately store data without alterations, safeguarding the interests of storage purchasers. However, these protocols lack an effective and equitable payment mechanism for data retrieval, particularly when multiple data queriers are involved. This necessitates a protocol that...
Security Perceptions of Users in Stablecoins: Advantages and Risks within the Cryptocurrency Ecosystem
Maggie Yongqi Guan, Yaman Yu, Tanusree Sharma, Molly Zhuangtong Huang, Kaihua Qin, Yang Wang, Kanye Ye Wang
Applications
Stablecoins, a type of cryptocurrency pegged to another asset to maintain a stable price, have become an important part of the cryptocurrency ecosystem. Prior studies have primarily focused on examining the security of stablecoins from technical and theoretical perspectives, with limited investigation into users’ risk perceptions and security behaviors in stablecoin practices. To address this research gap, we conducted a mixed-method study that included constructing a stablecoin interaction...
Overpass Channels: Horizontally Scalable, Privacy-Enhanced, with Independent Verification, Fluid Liquidity, and Robust Censorship Proof, Payments
Brandon "Cryptskii" Ramsay
Cryptographic protocols
Overpass Channels presents a groundbreaking approach to blockchain scalability, offering a horizontally scalable, privacy-enhanced payment network with independent verification, fluid liquidity, and robust censorship resistance. This paper introduces a novel architecture that leverages zero-knowledge proofs, specifically zk-SNARKs, to ensure transaction validity and privacy while enabling unprecedented throughput and efficiency.
By eliminating the need for traditional consensus mechanisms...
Functional Adaptor Signatures: Beyond All-or-Nothing Blockchain-based Payments
Nikhil Vanjani, Pratik Soni, Sri AravindaKrishnan Thyagarajan
Cryptographic protocols
In scenarios where a seller holds sensitive data $x$, like employee / patient records or ecological data, and a buyer seeks to obtain an evaluation of specific function $f$ on this data, solutions in trustless digital environments like blockchain-based Web3 systems typically fall into two categories: (1) Smart contract-powered solutions and (2) cryptographic solutions leveraging tools such as adaptor signatures. The former approach offers atomic transactions where the buyer learns the...
Exploring User Perceptions of Security Auditing in the Web3 Ecosystem
Molly Zhuangtong Huang, Rui Jiang, Tanusree Sharma, Kanye Ye Wang
Applications
In the rapidly evolving Web3 ecosystem, transparent auditing has emerged as a critical component for both applications and users. However, there is a significant gap in understanding how users perceive this new form of auditing and its implications for Web3 security. Utilizing a mixed-methods approach that incorporates a case study, user interviews, and social media data analysis, our study leverages a risk perception model to comprehensively explore Web3 users' perceptions regarding...
Practical Implementation of Pairing-Based zkSNARK in Bitcoin Script
Federico Barbacovi, Enrique Larraia, Paul Germouty, Wei Zhang
Implementation
Groth16 is a pairing-based zero-knowledge proof scheme that has a constant proof size and an efficient verification algorithm. Bitcoin Script is a stack-based low-level programming language that is used to lock and unlock bitcoins. In this paper, we present a practical implementation of the Groth16 verifier in Bitcoin Script deployable on the mainnet of a Bitcoin blockchain called BSV. Our result paves the way for a framework of verifiable computation on Bitcoin: a Groth16 proof is generated...
No Fish Is Too Big for Flash Boys! Frontrunning on DAG-based Blockchains
Jianting Zhang, Aniket Kate
Attacks and cryptanalysis
Frontrunning is rampant in blockchain ecosystems, yielding attackers profits that have already soared into several million. Most existing frontrunning attacks focus on manipulating transaction order (namely, prioritizing attackers' transactions before victims' transactions) $\textit{within}$ a block. However, for the emerging directed acyclic graph (DAG)-based blockchains, these intra-block frontrunning attacks may not fully reveal the frontrunning vulnerabilities as they introduce block...
Adaptive Security, Erasures, and Network Assumptions in Communication-Local MPC
Nishanth Chandran, Juan Garay, Ankit Kumar Misra, Rafail Ostrovsky, Vassilis Zikas
Cryptographic protocols
The problem of reliable/secure all-to-all communication over low-degree networks has been essential for communication-local (CL) n-party MPC (i.e., MPC protocols where every party directly communicates only with a few, typically polylogarithmic in n, parties) and more recently for communication over ad hoc networks, which are used in blockchain protocols. However, a limited number of adaptively secure solutions exist, and they all make relatively strong assumptions on the ability of parties...
P2C2T: Preserving the Privacy of Cross-Chain Transfer
Panpan Han, Zheng Yan, Laurence T. Yang, Elisa Bertino
Cryptographic protocols
Blockchain-enabled digital currency systems have typically operated in isolation, lacking necessary mechanisms for seamless interconnection. Consequently, transferring assets across distinct currency systems remains a complex challenge, with existing schemes often falling short in ensuring security, privacy, and practicality. This paper proposes P2C2T -- a privacy-preserving cross-chain transfer scheme. It is the first scheme to address atomicity, unlinkability, indistinguishability,...
On the Complexity of Cryptographic Groups and Generic Group Models
Cong Zhang, Keyu Ji, Taiyu Wang, Bingsheng Zhang, Hong-Sheng Zhou, Xin Wang, Kui Ren
Foundations
Ever since the seminal work of Diffie and Hellman, cryptographic (cyclic) groups have served as a fundamental building block for constructing cryptographic schemes and protocols. The security of these constructions can often be based on the hardness of (cyclic) group-based computational assumptions. Then, the generic group model (GGM) has been studied as an idealized model (Shoup, EuroCrypt 1997), which justifies the hardness of many (cyclic) group-based assumptions and shows the limits of...
Traffic-aware Merkle Trees for Shortening Blockchain Transaction Proofs
Avi Mizrahi, Noam Koren, Ori Rottenstreich, Yuval Cassuto
Applications
Merkle trees play a crucial role in blockchain networks in organizing network state. They allow proving a particular value of an entry in the state to a node that maintains only the root of the Merkle trees, a hash-based signature computed over the data in a hierarchical manner. Verification of particular state entries is crucial in reaching a consensus on the execution of a block where state information is required in the processing of its transactions. For instance, a payment transaction...
On the Relationship between Public Key Primitives via Indifferentiability
Shuang Hu, Bingsheng Zhang, Cong Zhang, Kui Ren
Foundations
Recently, Masny and Rindal [MR19] formalized a notion called Endemic Oblivious Transfer (EOT), and they proposed a generic transformation from Non-Interactive Key Exchange (NIKE) to EOT with standalone security in the random oracle (RO) model. However, from the model level, the relationship between idealized NIKE and idealized EOT and the relationship between idealized elementary public key primitives have been rarely researched.
In this work, we investigate the relationship between ideal...
Privacy Comparison for Bitcoin Light Client Implementations
Arad Kotzer, Ori Rottenstreich
Applications
Light clients implement a simple solution for Bitcoin's scalability problem, as they do not store the entire blockchain but only the state of particular addresses of interest. To be able to keep track of the updated state of their addresses, light clients rely on full nodes to provide them with the required information. To do so, they must reveal information about the addresses they are interested in. This paper studies the two most common light client implementations, SPV and Neutrino with...
Blind Multisignatures for Anonymous Tokens with Decentralized Issuance
Ioanna Karantaidou, Omar Renawi, Foteini Baldimtsi, Nikolaos Kamarinakis, Jonathan Katz, Julian Loss
Cryptographic protocols
We propose the first constructions of anonymous tokens with decentralized issuance. Namely, we consider a dynamic set of signers/issuers; a user can obtain a token from any subset of the signers, which is publicly verifiable and unlinkable to the issuance process. To realize this new primitive we formalize the notion of Blind Multi-Signatures (BMS), which allow a user to interact with multiple signers to obtain a (compact) signature; even if all the signers collude they are unable to link a...
VECTIS: Efficient Batching Framework for Group-based CP-SNARKs
Byeongjun Jang, Gweonho Jeong, Hyuktae Kwon, Hyunok Oh, Jihye Kim
Cryptographic protocols
Blockchain applications in finance and identity management increasingly require scalable and privacy-preserving solutions. Cryptographic commitments secure sensitive data on-chain, but verifying properties of these commitments efficiently remains challenging, particularly in large-scale scenarios. For multiple commitments, CP-SNARKs, a family of zk-SNARKs, enhance prover efficiency by shifting large-cost operations outside the circuit and verifying linkages between commitments, but incur...
A Recursive zk-based State Update System
Daniel Bloom, Sai Deng
Implementation
This paper introduces a ZKP (zero-knowledge proof) based state update system, where each block contains a SNARK proof aggregated from the user generated zkVM (zero knowledge virtual machine) proofs. It enables users to generate state update proofs in their local machines, contributing to a secure, decentralized verification process. Our main contribution in this paper, the recursive proofs system, addresses scalability by recursively verifying user proofs and aggregating them in a...
Survivable Payment Channel Networks
Yekaterina Podiatchev, Ariel Orda, Ori Rottenstreich
Applications
Payment channel networks (PCNs) are a leading method to scale the transaction throughput in cryptocurrencies. Two participants can use a bidirectional payment channel for making multiple mutual payments without committing them to the blockchain. Opening a payment channel is a slow operation that involves an on-chain transaction locking a certain amount of funds. These aspects limit the number of channels that can be opened or maintained. Users may route payments through a multi-hop path and...
FLIP-and-prove R1CS
Anca Nitulescu, Nikitas Paslis, Carla Ràfols
Cryptographic protocols
In this work, we consider the setting where one or more users with low computational resources would lie to outsource the task of proof generation for SNARKs to one external entity, named Prover. We study the scenario in which Provers have access to all statements and witnesses to be proven beforehand. We take a different approach to proof aggregation and design a new protocol that reduces simultaneously proving time and communication complexity, without going through recursive proof...
Understanding the Blockchain Interoperability Graph based on Cryptocurrency Price Correlation
Ori Mazor, Ori Rottenstreich
Applications
Cryptocurrencies have gained high popularity in
recent years, with over 9000 of them, including major ones such
as Bitcoin and Ether. Each cryptocurrency is implemented on
one blockchain or over several such networks. Recently, various
technologies known as blockchain interoperability have been
developed to connect these different blockchains and create an
interconnected blockchain ecosystem. This paper aims to provide
insights on the blockchain ecosystem and the connection...
Horcrux: Synthesize, Split, Shift and Stay Alive Preventing Channel Depletion via Universal and Enhanced Multi-hop Payments
Anqi Tian, Peifang Ni, Yingzi Gao, Jing Xu
Cryptographic protocols
Payment Channel Networks (PCNs) have been highlighted as viable solutions to address the scalability issues in current permissionless blockchains. They facilitate off-chain transactions, significantly reducing the load on the blockchain. However, the extensive reuse of multi-hop routes in the same direction poses a risk of channel depletion, resulting in involved channels becoming unidirectional or even closing, thereby compromising the sustainability and scalability of PCNs. Even more...
Dynamic Threshold Key Encapsulation with a Transparent Setup
Joon Sik Kim, Kwangsu Lee, Jong Hwan Park, Hyoseung Kim
Public-key cryptography
A threshold key encapsulation mechanism (TKEM) facilitates the secure distribution of session keys among multiple participants, allowing key recovery through a threshold number of shares. TKEM has gained significant attention, especially for decentralized systems, including blockchains. However, existing constructions often rely on trusted setups, which pose security risks such as a single point of failure, and are limited by fixed participant numbers and thresholds. To overcome this, we...
Permissionless Verifiable Information Dispersal (Data Availability for Bitcoin Rollups)
Ben Fisch, Arthur Lazzaretti, Zeyu Liu, Lei Yang
Cryptographic protocols
Rollups are special applications on distributed state machines (aka blockchains) for which the underlying state machine only logs, but does not execute transactions. Rollups have become a popular way to scale applications on Ethereum and there is now growing interest in running rollups on Bitcoin. Rollups scale throughput and reduce transaction costs by using auxiliary machines that have higher throughput and lower cost of executing transactions than the underlying blockchain. State updates...
Universal Composable Transaction Serialization with Order Fairness
Michele Ciampi, Aggelos Kiayias, Yu Shen
Cryptographic protocols
Order fairness in the context of distributed ledgers has received recently significant attention due to a range of attacks that exploit the reordering and adaptive injection of transactions (violating what is known as “input causality”). To address such concerns an array of definitions for order fairness has been put forth together with impossibility and feasibility results highlighting the difficulty and multifaceted nature of fairness in transaction serialization. Motivated by this we...
Dilithium-Based Verifiable Timed Signature Scheme
Erkan Uslu, Oğuz Yayla
Cryptographic protocols
Verifiable Timed Signatures (VTS) are cryptographic constructs that enable obtaining a signature at a specific time in the future and provide evidence that the signature is legitimate. This framework particularly finds utility in applications such as payment channel networks, multiparty signing operations, or multiparty computation, especially within blockchain architectures. Currently, VTS schemes are based on signature algorithms such as BLS signature, Schnorr signature, and ECDSA. These...
Efficient (Non-)Membership Tree from Multicollision-Resistance with Applications to Zero-Knowledge Proofs
Maksym Petkus
Cryptographic protocols
Many applications rely on accumulators and authenticated dictionaries, from timestamping certificate transparency and memory checking to blockchains and privacy-preserving decentralized electronic money, while Merkle tree and its variants are efficient for arbitrary element membership proofs, non-membership proofs, i.e., universal accumulators, and key-based membership proofs may require trees up to 256 levels for 128 bits of security, assuming binary tree, which makes it inefficient in...
The Espresso Sequencing Network: HotShot Consensus, Tiramisu Data-Availability, and Builder-Exchange
Jeb Bearer, Benedikt Bünz, Philippe Camacho, Binyi Chen, Ellie Davidson, Ben Fisch, Brendon Fish, Gus Gutoski, Fernando Krell, Chengyu Lin, Dahlia Malkhi, Kartik Nayak, Keyao Shen, Alex Xiong, Nathan Yospe, Sishan Long
Cryptographic protocols
Building a Consensus platform for shared sequencing can power an ecosystem of layer-2 solutions such as rollups which are crucial for scaling blockchains (e.g.,Ethereum). However, it drastically differs from conventional Consensus for blockchains in two key considerations:
• (No) Execution: A shared sequencing platform is not responsible for pre-validating blocks nor for processing state updates. Therefore, agreement is formed on a sequence of certificates of block data-availability (DA)...
Towards Quantum-Safe Blockchain: Exploration of PQC and Public-key Recovery on Embedded Systems
Dominik Marchsreiter
Applications
Blockchain technology ensures accountability,
transparency, and redundancy in critical applications, includ-
ing IoT with embedded systems. However, the reliance on
public-key cryptography (PKC) makes blockchain vulnerable to
quantum computing threats. This paper addresses the urgent
need for quantum-safe blockchain solutions by integrating Post-
Quantum Cryptography (PQC) into blockchain frameworks.
Utilizing algorithms from the NIST PQC standardization pro-
cess, we aim to fortify...
A zero-trust swarm security architecture and protocols
Alex Shafarenko
Cryptographic protocols
This report presents the security protocols and general trust architecture of the SMARTEDGE swarm computing platform. Part 1 describes the coordination protocols for use in a swarm production environment, e.g. a smart factory, and Part 2 deals with crowd-sensing scenarios characteristic of traffic-control swarms.
AVeCQ: Anonymous Verifiable Crowdsourcing with Worker Qualities
Vlasis Koutsos, Sankarshan Damle, Dimitrios Papadopoulos, Sujit Gujar, Dimitris Chatzopoulos
Applications
In crowdsourcing systems, requesters publish tasks, and interested workers provide answers to get rewards. Worker anonymity motivates participation since it protects their privacy. Anonymity with unlinkability is an enhanced version of anonymity because it makes it impossible to ``link'' workers across the tasks they participate in. Another core feature of crowdsourcing systems is worker quality which expresses a worker's trustworthiness and quantifies their historical performance. In this...
Expanding the Toolbox: Coercion and Vote-Selling at Vote-Casting Revisited
Tamara Finogina, Javier Herranz, Peter B. Roenne
Applications
Coercion is a challenging and multi-faceted threat that prevents people from expressing their will freely. Similarly, vote-buying does to undermine the foundation of free democratic elections. These threats are especially dire for remote electronic voting, which relies on voters to express their political will freely but happens in an uncontrolled environment outside the polling station and the protection of the ballot booth. However, electronic voting in general, both in-booth and remote,...
Blockchain Space Tokenization
Aggelos Kiayias, Elias Koutsoupias, Philip Lazos, Giorgos Panagiotakos
Cryptographic protocols
Handling congestion in blockchain systems is a fundamental problem given that the security and decentralization objectives of such systems lead to designs that compromise on (horizontal) scalability (what sometimes is referred to as the ``blockchain trilemma''). Motivated by this, we focus on the question whether it is possible to design a transaction inclusion policy for block producers that facilitates fee and delay predictability while being incentive compatible at the same time....
A Note on ``Secure and Distributed IoT Data Storage in Clouds Based on Secret Sharing and Collaborative Blockchain''
Zhengjun Cao, Lihua Liu
Attacks and cryptanalysis
We show that the data storage scheme [IEEE/ACM Trans. Netw., 2023, 31(4), 1550-1565] is flawed due to the false secret sharing protocol, which requires that some random $4\times 4$ matrixes over the finite field $F_p$ (a prime $p$) are invertible. But we find its mathematical proof for invertibility is incorrect. To fix this flaw, one needs to check the invertibility of all 35 matrixes so as to generate the proper 7 secret shares.
Scalable and Lightweight State-Channel Audits
Christian Badertscher, Maxim Jourenko, Dimitris Karakostas, Mario Larangeira
Cryptographic protocols
Payment channels are one of the most prominent off-chain scaling solutions for blockchain systems. However, regulatory institutions have difficulty embracing them, as the channels lack insights needed for Anti-Money Laundering (AML) auditing purposes. Our work tackles the problem of a formal reliable and controllable inspection of off-ledger payment channels, by offering a novel approach for maintaining and reliably auditing statistics of payment channels. We extend a typical trustless Layer...
A New PPML Paradigm for Quantized Models
Tianpei Lu, Bingsheng Zhang, Xiaoyuan Zhang, Kui Ren
Cryptographic protocols
Model quantization has become a common practice in machine learning (ML) to improve efficiency and reduce computational/communicational overhead. However, adopting quantization in privacy-preserving machine learning (PPML) remains challenging due to the complex internal structure of quantized operators, which leads to inefficient protocols under the existing PPML frameworks.
In this work, we propose a new PPML paradigm that is tailor-made for and can benefit from quantized models. Our...
Distributed Verifiable Random Function With Compact Proof
Ahmet Ramazan Ağırtaş, Arda Buğra Özer, Zülfükar Saygı, Oğuz Yayla
Cryptographic protocols
Verifiable Random Functions (VRFs) are cryptographic primitives that generate unpredictable randomness along with proofs that are verifiable, a critical requirement for blockchain applications in decentralized finance, online gaming, and more. Existing VRF constructions often rely on centralized entities, creating security vulnerabilities. Distributed VRFs (DVRFs) offer a decentralized alternative but face challenges like large proof sizes or dependence on computationally expensive bilinear...
Shared-Custodial Password-Authenticated Deterministic Wallets
Poulami Das, Andreas Erwig, Sebastian Faust
Cryptographic protocols
Cryptographic wallets are an essential tool in Blockchain networks to ensure the secure storage and maintenance of an user's cryptographic keys. Broadly, wallets can be divided into three categories, namely custodial, non-custodial, and shared-custodial wallets. The first two are centralized solutions, i.e., the wallet is operated by a single entity, which inherently introduces a single point of failure. Shared-custodial wallets, on the other hand, are maintained by two independent parties,...
Public vs Private Blockchains lineage storage
Bilel Zaghdoudi, Maria Potop Butucaru
Applications
This paper reports the experimental results related to lineage event storage via smart contracts deployed on private and public blockchain. In our experiments we measure the following three metrics: the cost to deploy the storage smart contract on the blockchain, which measures the initial expenditure, typically in gas units, required to deploy the smart contract that facilitates lineage event storage, then the time and gas costs needed to store a lineage event. We investigated both single...
Faster Asynchronous Blockchain Consensus and MVBA
Matthieu Rambaud
Applications
Blockchain consensus, a.k.a. BFT SMR, are protocols enabling $n$ processes to decide on an ever-growing chain. The fastest known asynchronous one is called 2-chain VABA (PODC'21 and FC'22), and is used as fallback chain in Abraxas* (CCS'23). It has a claimed $9.5\delta$ expected latency when used for a single shot instance, a.k.a. an MVBA.
We exhibit attacks breaking it. Hence, the title of the fastest asynchronous MVBA with quadratic messages complexity goes to sMVBA (CCS'22), with...
Enabling Complete Atomicity for Cross-chain Applications Through Layered State Commitments
Yuandi Cai, Ru Cheng, Yifan Zhou, Shijie Zhang, Jiang Xiao, Hai Jin
Applications
Cross-chain Decentralized Applications (dApps) are increasingly popular for their ability to handle complex tasks across various blockchains, extending beyond simple asset transfers or swaps. However, ensuring all dependent transactions execute correctly together, known as complete atomicity, remains a challenge. Existing works provide financial atomicity, protecting against monetary loss, but lack the ability to ensure correctness for complex tasks. In this paper, we introduce Avalon, a...
Insta-Pok3r: Real-time Poker on Blockchain
Sanjam Garg, Aniket Kate, Pratyay Mukherjee, Rohit Sinha, Sriram Sridhar
Cryptographic protocols
We develop a distributed service for generating correlated randomness (e.g. permutations) for multiple parties, where each party’s output is private but publicly verifiable. This service provides users with a low-cost way to play online poker in real-time, without a trusted party.
Our service is backed by a committee of compute providers, who run a multi-party computation (MPC) protocol to produce an (identity-based) encrypted permutation of a deck of cards, in an offline phase well ahead...
Adaptor Signatures: New Security Definition and A Generic Construction for NP Relations
Xiangyu Liu, Ioannis Tzannetos, Vassilis Zikas
Public-key cryptography
An adaptor signatures (AS) scheme is an extension of digital signatures that allows the signer to generate a pre-signature for an instance of a hard relation. This pre-signature can later be adapted to a full signature with a corresponding witness. Meanwhile, the signer can extract a witness from both the pre-signature and the signature. AS have recently garnered more attention due to its scalability and interoperability. Dai et al. [INDOCRYPT 2022] proved that AS can be constructed for any...
On Sequential Functions and Fine-Grained Cryptography
Jiaxin Guan, Hart Montgomery
Foundations
A sequential function is, informally speaking, a function $f$ for which a massively parallel adversary cannot compute "substantially" faster than an honest user with limited parallel computation power. Sequential functions form the backbone of many primitives that are extensively used in blockchains such as verifiable delay functions (VDFs) and time-lock puzzles. Despite this widespread practical use, there has been little work studying the complexity or theory of sequential...
Competitive Policies for Online Collateral Maintenance
Ghada Almashaqbeh, Sixia Chen, Alexander Russell
Foundations
Layer-two blockchain protocols emerged to address scalability issues related to fees, storage cost, and confirmation delay of on-chain transactions. They aggregate off-chain transactions into a fewer on-chain ones, thus offering immediate settlement and reduced transaction fees. To preserve security of the underlying ledger, layer-two protocols often work in a collateralized model; resources are committed on-chain to backup off-chain activities. A fundamental challenge that arises in this...
ammBoost: State Growth Control for AMMs
Nicholas Michel, Mohamed E. Najd, Ghada Almashaqbeh
Cryptographic protocols
Automated market makers (AMMs) are a form of decentralized cryptocurrency exchanges that have attracted huge interest lately. They are considered a prime example of Decentralized Finance (DeFi) applications, a large category under Web 3.0. Their popularity and high trading activity have resulted in millions of on-chain transactions leading to serious scalability issues in terms of throughput and on-chain state size. Existing scalability solutions, when employed in the context of AMMs, are...
chainBoost: A Secure Performance Booster for Blockchain-based Resource Markets
Zahra Motaqy, Mohamed E. Najd, Ghada Almashaqbeh
Cryptographic protocols
Cryptocurrencies and blockchain technology provide an innovative model for reshaping digital services. Driven by the movement toward Web 3.0, recent systems started to provide distributed services, such as computation outsourcing or file storage, on top of the currency exchange medium. By allowing anyone to join and collect cryptocurrency payments for serving others, these systems create decentralized markets for trading digital resources. Yet, there is still a big gap between the promise of...
SoK: Programmable Privacy in Distributed Systems
Daniel Benarroch, Bryan Gillespie, Ying Tong Lai, Andrew Miller
Applications
This Systematization of Knowledge conducts a survey of contemporary distributed blockchain protocols, with the aim of identifying cryptographic and design techniques which practically enable both expressive programmability and user data confidentiality. To facilitate a framing which supports the comparison of concretely very different protocols, we define an epoch-based computational model in the form of a flexible UC-style ideal functionality which divides the operation of...
Fast SNARK-based Non-Interactive Distributed Verifiable Random Function with Ethereum Compatibility
Jia Liu, Mark Manulis
Cryptographic protocols
Distributed randomness beacons (DRBs) are fundamental for various decentralised applications, such as consensus protocols, decentralised gaming and lotteries, and collective governance protocols. These applications are heavily used on modern blockchain platforms.
This paper presents the so far most efficient direct construction and implementation of a non-interactive distributed verifiable random function (NI-DVRF) that is fully compatible with Ethereum. Our NI-DVRF scheme adopts...
Efficient Execution Auditing for Blockchains under Byzantine Assumptions
Jeff Burdges, Alfonso Cevallos, Handan Kılınç Alper, Chen-Da Liu-Zhang, Fatemeh Shirazi, Alistair Stewart, Rob Habermeier, Robert Klotzner, Andronik Ordian
Cryptographic protocols
Security of blockchain technologies primarily relies on decentralization making them resilient against a subset of entities being taken down or corrupt. Blockchain scaling, crucial to decentralisation, has been addressed by architectural changes: i.e., the load of the nodes is reduced by parallelisation, called sharding or by taking computation load off the main blockchain via rollups. Both sharding and rollups have limitations in terms of decentralization and security.
A crucial component...
VRaaS: Verifiable Randomness as a Service on Blockchains
Jacob Gorman, Lucjan Hanzlik, Aniket Kate, Easwar Vivek Mangipudi, Pratyay Mukherjee, Pratik Sarkar, Sri AravindaKrishnan Thyagarajan
Foundations
Web3 applications, such as on-chain games, NFT minting, and leader elections necessitate access to unbiased, unpredictable, and publicly verifiable randomness. Despite its broad use cases and huge demand, there is a notable absence of comprehensive treatments of on-chain verifiable randomness services. To bridge this, we offer an extensive formal analysis of on-chain verifiable randomness services.
We present the $first$ formalization of on-chain verifiable randomness in the...
MixBuy: Contingent Payment in the Presence of Coin Mixers
Diego Castejon-Molina, Dimitrios Vasilopoulos, Pedro Moreno-Sanchez
Applications
A contingent payment protocol involves two mutually distrustful parties, a buyer and a seller, operating on the same blockchain, and a digital product, whose ownership is not tracked on a blockchain (e.g. a digital book). The buyer holds coins on the blockchain and transfers them to the seller in exchange for the product. However, if the blockchain does not hide transaction details, any observer can learn that a buyer purchased some product from a seller.
In this work, we take...
SmartZKCP: Towards Practical Data Exchange Marketplace Against Active Attacks
Xuanming Liu, Jiawen Zhang, Yinghao Wang, Xinpeng Yang, Xiaohu Yang
Applications
The trading of data is becoming increasingly important as it holds substantial value. A blockchain-based data marketplace can provide a secure and transparent platform for data exchange. To facilitate this, developing a fair data exchange protocol for digital goods has garnered considerable attention in recent decades. The Zero Knowledge Contingent Payment (ZKCP) protocol enables trustless fair exchanges with the aid of blockchain and zero-knowledge proofs. However, applying this protocol in...
Dynamic-FROST: Schnorr Threshold Signatures with a Flexible Committee
Annalisa Cimatti, Francesco De Sclavis, Giuseppe Galano, Sara Giammusso, Michela Iezzi, Antonio Muci, Matteo Nardelli, Marco Pedicini
Cryptographic protocols
Threshold signatures enable any subgroup of predefined cardinality $t$ out of a committee of $n$ participants to generate a valid, aggregated signature.
Although several $(t,n)$-threshold signature schemes exist, most of them assume that the threshold $t$ and the set of participants do not change over time.
Practical applications of threshold signatures might benefit from the possibility of updating the threshold or the committee of participants. Examples of such applications are...
Analyzing and Benchmarking ZK-Rollups
Stefanos Chaliasos, Itamar Reif, Adrià Torralba-Agell, Jens Ernstberger, Assimakis Kattis, Benjamin Livshits
Implementation
As blockchain technology continues to transform the realm of digital transactions, scalability has emerged as a critical issue. This challenge has spurred the creation of innovative solutions, particularly Layer 2 scalability techniques like rollups. Among these, ZK-Rollups are notable for employing Zero-Knowledge Proofs to facilitate prompt on-chain transaction verification, thereby improving scalability and efficiency without sacrificing security. Nevertheless, the intrinsic complexity of...
The Stealth Address Protocol (SAP) allows users to receive assets through stealth addresses that are unlinkable to their stealth meta-addresses. The most widely used SAP, Dual-Key SAP (DKSAP), and the most performant SAP, Elliptic Curve Pairing Dual-Key SAP (ECPDKSAP), are based on elliptic curve cryptography, which is vulnerable to quantum attacks. These protocols depend on the elliptic curve discrete logarithm problem, which could be efficiently solved on a sufficiently powerful quantum...
Ethereum transitioned from Proof-of-Work consensus to Proof-of-Stake (PoS) consensus in September 2022. While this upgrade brings significant improvements (e.g., lower energy costs and higher throughput), it also introduces new vulnerabilities. One notable example is the so-called malicious \textit{reorganization attack}. Malicious reorganization denotes an attack in which the Byzantine faulty validators intentionally manipulate the canonical chain so the blocks by honest validators are...
This work explores the application and efficient deployment of (standardized) post-quantum (PQ) digital signature algorithms in the blockchain environment. Specifically, we implement and evaluate four PQ signatures in the Ethereum Virtual Machine: W-OTS$^{+}$, XMSS, SPHINCS+, and MAYO. We focus on optimizing the gas costs of the verification algorithms as that is the signature schemes' only algorithm executed on-chain, thus incurring financial costs (transaction fees) for the users. Hence,...
Byzantine fault-tolerant (BFT) state machine replication (SMR) protocols form the basis of modern blockchains as they maintain a consistent state across all blockchain nodes while tolerating a bounded number of Byzantine faults. We analyze BFT SMR in the excessive fault setting where the actual number of Byzantine faults surpasses a protocol's tolerance. We start by devising the very first repair algorithm for linearly chained and quorum-based partially synchronous SMR to recover from...
Meet-in-the-middle (MitM) is a powerful approach for the cryptanalysis of symmetric primitives. In recent years, MitM has led to many improved records about key recovery, preimage and collision attacks with the help of automated tools. However, most of the previous work target $\texttt{AES}$-like hashing where the linear layer is an MDS matrix. And we observe that their automatic model for MDS matrix is not suitable for primitives using a binary matrix as their linear layer. In this...
Cryptocurrencies allow mutually distrusting users to transact monetary value over the internet without relying on a trusted third party. Bitcoin, the first cryptocurrency, achieved this through a novel protocol used to establish consensus about an ordered transaction history. This requires every transaction to be broadcasted and verified by the network, incurring communication and computational costs. Furthermore, transactions are visible to all nodes of the network, eroding privacy,...
Directed Acyclic Graph (DAG) based protocols have shown great promise to improve the performance of blockchains. The CAP theorem shows that it is impossible to have a single system that achieves both liveness (known as dynamic availability) and safety under network partition.This paper explores two types of DAG-based protocols prioritizing liveness or safety, named structured dissemination and Graded Common Prefix (GCP), respectively. For the former, we introduce the first...
Many cryptographic protocols rely upon an initial \emph{trusted setup} to generate public parameters. While the concept is decades old, trusted setups have gained prominence with the advent of blockchain applications utilizing zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs), many of which rely on a ``powers-of-tau'' setup. Because such setups feature a dangerous trapdoor which undermines security if leaked, multiparty protocols are used to prevent the trapdoor...
We introduce the concept of Fair Signature Exchange (FSE). FSE enables a client to obtain signatures on multiple messages in a fair manner: the client receives all signatures if and only if the signer receives an agreed-upon payment. We formalize security definitions for FSE and present a practical construction based on the Schnorr signature scheme, avoiding computationally expensive cryptographic primitives such as SNARKs. Our scheme imposes minimal overhead on the Schnorr signer and...
The increasing number of blockchain projects introduced annually has led to a pressing need for secure and efficient interoperability solutions. Currently, the lack of such solutions forces end-users to rely on centralized intermediaries, contradicting the core principle of decentralization and trust minimization in blockchain technology. In this paper, we propose a decentralized and efficient interoperability solution (aka Bridge Protocol) that operates without additional trust assumptions,...
Cryptojacking, the unauthorised use of computing resources to mine cryptocurrency, has emerged as a critical threat in today’s digital landscape. These attacks not only compromise system integrity but also result in increased costs, reduced hardware lifespan, and heightened network security risks. Early and accurate detection is essential to mitigate the adverse effects of cryptojacking. This study focuses on developing a semi-supervised machine learning (ML) approach that leverages an...
Stateless blockchain designs have emerged to address the challenge of growing blockchain size using succinct global states. Previous works have developed vector commitments that support proof updates and aggregation to be used as such states. However, maintaining proofs for multiple users still demands significant computational resources, particularly to update proofs with every transaction. This paper introduces Cauchyproofs, a batch-updatable vector commitment that enables proof-serving...
Proof-of-stake consensus protocols often rely on distributed randomness beacons (DRBs) to generate randomness for leader selection. This work analyses the manipulability of Ethereum's DRB implementation, RANDAO, in its current consensus mechanism. Even with its efficiency, RANDAO remains vulnerable to manipulation through the deliberate omission of blocks from the canonical chain. Previous research has shown that economically rational players can withhold blocks --~known as a block...
Two most common ways to design non-interactive zero knowledge (NIZK) proofs are based on Sigma ($\Sigma$)-protocols (an efficient way to prove algebraic statements) and zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARK) protocols (an efficient way to prove arithmetic statements). However, in the applications of cryptocurrencies such as privacy-preserving credentials, privacy-preserving audits, and blockchain-based voting systems, the zk-SNARKs for general statements...
Today, many auctions are carried out with the help of intermediary platforms like Google and eBay. These platforms serve as a rendezvous point for the buyers and sellers, and charge a fee for its service. We refer to such auctions as platform-assisted auctions. Traditionally, the auction theory literature mainly focuses on designing auctions that incentivize the buyers to bid truthfully, assuming that the platform always faithfully implements the auction. In practice, however, the platforms...
Internet-scale consensus protocols used by blockchains are designed to remain operational in the presence of unexpected temporary crash faults (the so-called sleepy model of consensus) -- a critical feature for the latency-sensitive financial applications running on these systems. However, their leader-based architecture, where a single block proposer is responsible for creating the block at each height, makes them vulnerable to short-term censorship attacks, in which the proposers profit...
We describe the design and implementation of MicroNova, a folding-based recursive argument for producing proofs of incremental computations of the form $y = F^{(\ell)}(x)$, where $F$ is a possibly non-deterministic computation (encoded using a constraint system such as R1CS), $x$ is the initial input, $y$ is the output, and $\ell > 0$. The proof of an $\ell$-step computation is produced step-by-step such that the proof size nor the time to verify it depends on $\ell$. The proof at the final...
With the rapid growth of blockchain-based Non-Fungible Tokens (NFTs), data trading has evolved to incorporate NFTs for ownership verification. However, the NFT ecosystem faces significant challenges in copyright protection, particularly when malicious buyers slightly modify the purchased data and re-mint it as a new NFT, infringing upon the original owner's rights. In this paper, we propose a copyright-preserving data trading protocol to address this challenge. First, we introduce the...
A long-standing question in the blockchain community is which class of computations are efficiently expressible in cryptocurrencies with limited scripting languages, such as Bitcoin Script. Such languages expose a reduced trusted computing base, thereby being less prone to hacks and vulnerabilities, but have long been believed to support only limited classes of payments. In this work, we confute this long-standing belief by showing for the first time that arbitrary computations can be...
With the emergence of DeFi, attacks based on re-ordering transactions have become an essential problem for public blockchains. Such attacks include front-running or sandwiching transactions, where the adversary places transactions at a particular place within a block to influence a financial asset’s market price. In the Ethereum space, the value extracted by such attacks is often referred to as miner/maximal extractable value (MEV), which to date is estimated to have reached a value of more...
Ensuring transaction privacy in blockchain systems is essential to safeguard user data and financial activity from exposure on public ledgers. This paper conducts a systematization of knowledge (SoK) on privacy-preserving techniques in cryptocurrencies with native privacy features. We define and compare privacy notions such as confidentiality, k-anonymity, full anonymity, and sender-receiver unlinkability, and categorize the cryptographic techniques employed to achieve these guarantees. Our...
In this work, we introduce Modular Algebraic Proof Contingent Payment (MAPCP), a novel zero-knowledge contingent payment (ZKCP) construction. Unlike previous approaches, MAPCP is the first that simultaneously avoids using zk-SNARKs as the tool for zero-knowledge proofs and HTLC contracts to atomically exchange a secret for a payment. As a result, MAPCP sidesteps the common reference string (crs) creation problem and is compatible with virtually any cryptocurrency, even those with limited or...
We present EndGame, a novel blockchain architecture that achieves succinctness through Reed-Solomon accumulation schemes. Our construction enables constant-time verification of blockchain state while maintaining strong security properties. We demonstrate how to efficiently encode blockchain state transitions using Reed-Solomon codes and accumulate proofs of state validity using the ARC framework. Our protocol achieves optimal light client verification costs and supports efficient state...
The concept of a decentralized computer is a powerful and transformative idea that has proven its significance in enabling trustless, distributed computations. However, its application has been severely constrained by an inability to handle private data due to the inherent transparency of blockchain systems. This limitation restricts the scope of use cases, particularly in domains where confidentiality is critical. In this work, we introduce a model for a Fully Homomorphic Encryption...
Sharding emerges as a promising solution to enhance blockchain scalability. However, it faces two critical limitations during shard reconfiguration: (1) the TPS-Degradation issue, arising from ledger synchronization conflicts during transaction processing, and (2) the Zero-TPS issue, caused by disruptions in transaction processing due to key negotiation. To this end, we propose Shardora, a blockchain sharding system for scaling blockchain by unleashing parallelism. In Shardora, we implement...
In blockchain networks, transaction latency is crucial for determining the quality of service (QoS). The latency of a transaction is measured as the time between its issuance and its inclusion in a block in the chain. A block proposer often prioritizes transactions with higher fees or transactions from accounts it is associated with, to minimize their latencies. To maintain fairness among transactions, a block proposer is expected to select the included transactions randomly. The random...
This article tries to offer a solution to an environmental sustainability problem using a forward-thinking approach and tries to construct a carbon footprint tracking system based on blockchain technology while also introducing tokenization intertwined with the blockchain to make everyday use as accessible and effective as possible. This effort aims to provide a solid use case for environmental sustainability and lays the groundwork of a new generation social construct where carbon...
Zero-knowledge proof (ZKP) is a cryptographic primitive that enables one party to prove the validity of a statement to other parties without disclosing any secret information. With its widespread adoption in applications such as blockchain and verifiable machine learning, the demand for generating zero-knowledge proofs has increased dramatically. In recent years, considerable efforts have been directed toward developing GPU-accelerated systems for proof generation. However, these previous...
Scalability remains a key challenge for blockchain adoption. Rollups—especially zero-knowledge (ZK) and optimistic rollups—address this by processing transactions off-chain while maintaining Ethereum’s security, thus reducing gas fees and improving speeds. Cross-rollup bridges like Orbiter Finance enable seamless asset transfers across various Layer 2 (L2) rollups and between L2 and Layer 1 (L1) chains. However, the increasing reliance on these bridges raises significant security concerns,...
The GHOST protocol has been proposed as an improvement to the Nakamoto consensus mechanism that underlies Bitcoin. In contrast to the Nakamoto fork-choice rule, the GHOST rule justifies selection of a chain with weights computed over subtrees rather than individual paths. This mechanism has been adopted by a variety of consensus protocols, and is a part of the currently deployed protocol supporting Ethereum. We establish an exact characterization of the security region of the GHOST...
As the first proof-of-work (PoW) permissionless blockchain, Bitcoin aims at maintaining a decentralized yet consistent transaction ledger as protocol participants (“miners”) join and leave as they please. This is achieved by means of a subtle PoW difficulty adjustment mechanism that adapts to the perceived block generation rate, and important steps have been taken in previous work to provide a rigorous analysis of the conditions (such as bounds on dynamic participation) that are sufficient...
Adaptor signatures extend the functionality of regular signatures through the computation of pre-signatures on messages for statements of NP relations. Pre-signatures are publicly verifiable; they simultaneously hide and commit to a signature of an underlying signature scheme on that message. Anybody possessing a corresponding witness for the statement can adapt the pre-signature to obtain the "regular" signature. Adaptor signatures have found numerous applications for conditional payments...
Zero-knowledge Succinct Non-interactive Argument of Knowledge (zkSNARK) is a powerful cryptographic primitive, in which a prover convinces a verifier that a given statement is true without leaking any additional information. However, existing zkSNARKs suffer from high computation overhead in the proof generation. This limits the applications of zkSNARKs, such as private payments, private smart contracts, and anonymous credentials. Private delegation has become a prominent way to accelerate...
\textit{Federated Learning} (FL) is a distributed machine learning paradigm that allows multiple clients to train models collaboratively without sharing local data. Numerous works have explored security and privacy protection in FL, as well as its integration with blockchain technology. However, existing FL works still face critical issues. \romannumeral1) It is difficult to achieving \textit{poisoning robustness} and \textit{data privacy} while ensuring high \textit{model accuracy}....
Modern blockchain-based consensus protocols aim for efficiency (i.e., low communication and round complexity) while maintaining security against adaptive adversaries. These goals are usually achieved using a public randomness beacon to select roles for each participant. We examine to what extent this randomness is necessary. Specifically, we provide tight bounds on the amount of entropy a Byzantine Agreement protocol must consume from a beacon in order to enjoy efficiency and adaptive...
In this paper, we introduce zkMarket, a privacy-preserving fair trade system on the blockchain. zkMarket addresses the challenges of transaction privacy and computational efficiency. To ensure transaction privacy, zkMarket is built upon an anonymous transfer protocol. By combining encryption with zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARK), both the seller and the buyer are enabled to trade fairly. Furthermore, by encrypting the decryption key, we make the data...
Adaptor signatures (AS) extend the functionality of traditional digital signatures by enabling the generation of a pre-signature tied to an instance of a hard NP relation, which can later be turned (adapted) into a full signature upon revealing a corresponding witness. The recent work by Liu et al. [ASIACRYPT 2024] devised a generic AS scheme that can be used for any NP relation---which here we will refer to as universal adaptor signatures scheme, in short UAS---from any one-way function....
Bitcoin, while being the most prominent blockchain with the largest market capitalization, suffers from scalability and throughput limitations that impede the development of ecosystem projects like Bitcoin Decentralized Finance (BTCFi). Recent advancements in BitVM propose a promising Layer 2 (L2) solution to enhance Bitcoin's scalability by enabling complex computations off-chain with on-chain verification. However, Bitcoin's constrained programming environment—characterized by its...
Multi-signature schemes are gaining significant interest due to their blockchain applications. Of particular interest are two-round schemes in the plain public-key model that offer key aggregation, and whose security is based on the hardness of the DLOG problem. Unfortunately, despite substantial recent progress, the security proofs of the proposed schemes provide rather insufficient concrete guarantees (especially for 256-bit groups). This frustrating situation has so far been approached...
The increased throughput offered by modern blockchains, such as Sui, Aptos, and Solana, enables processing thousands of transactions per second, but it also introduces higher costs for decentralized application (dApp) developers who need to track and verify changes in the state of their application. This is true because dApp developers run full nodes, which download and re-execute every transaction to track the global state of the chain. However, this becomes prohibitively expensive for...
Homomorphic Encryption (HE) enables operations on encrypted data without requiring decryption, thus allowing for secure handling of confidential data within smart contracts. Among the known HE schemes, FHEW and TFHE are particularly notable for use in smart contracts due to their lightweight nature and support for arbitrary logical gates. In contrast, other HE schemes often require several gigabytes of keys and are limited to supporting only addition and multiplication. As a result, there...
This paper addresses verifiable consensus of pre-processed circuit polynomials for succinct non-interactive argument of knowledge (SNARK). More specifically, we focus on parts of circuits, referred to as wire maps, which may change based on program inputs or statements being argued. Preparing commitments to wire maps in advance is essential for certain SNARK protocols to maintain their succinctness, but it can be costly. SNARK verifiers can alternatively consider receiving wire maps from an...
This paper studies transaction execution mechanisms (TEMs) for blockchains, as the efficient resource allocation across multiple parallel executions queues or "local fee markets." We present a model considering capacity constraints, user valuations, and delay costs in a multi-queue system with an aggregate capacity constraint due to global consensus. We show that revenue maximization tends to allocate capacity to the highest-paying queue, while welfare maximization generally serves all...
Blockchain-based auction markets offer stronger fairness and transparency compared to their centralized counterparts. Deposits and sealed bid formats are usually applied to enhance security and privacy. However, to our best knowledge, the formal treatment of deposit-enabled sealed-bid auctions remains lacking in the cryptographic literature. To address this gap, we first propose a decentralized anonymous deposited-bidding (DADB) scheme, providing formal syntax and security definitions....
We address the problem of detecting and punishing shareholder collusion in secret-sharing schemes. We do it in the recently proposed cryptographic model called individual cryptography (Dziembowski, Faust, and Lizurej, Crypto 2023), which assumes that there exist tasks that can be efficiently computed by a single machine but distributing this computation across multiple (mutually distrustful devices) is infeasible. Within this model, we introduce a novel primitive called secret sharing...
We propose a new cryptographic primitive called "batched identity-based encryption" (Batched IBE) and its thresholdized version. The new primitive allows encrypting messages with specific identities and batch labels, where the latter can represent, for example, a block number on a blockchain. Given an arbitrary subset of identities for a particular batch, our primitive enables efficient issuance of a single decryption key that can be used to decrypt all ciphertexts having identities that are...
Artificial Intelligence (AI) has steadily improved across a wide range of tasks, and a significant breakthrough towards general intelligence was achieved with the rise of generative deep models, which have garnered worldwide attention. However, the development and deployment of AI are almost entirely controlled by a few powerful organizations and individuals who are racing to create Artificial General Intelligence (AGI). These centralized entities make decisions with little public oversight,...
Decentralized storage networks, including IPFS and Filecoin, have created a marketplace where individuals exchange storage space for profit. These networks employ protocols that reliably ensure data storage providers accurately store data without alterations, safeguarding the interests of storage purchasers. However, these protocols lack an effective and equitable payment mechanism for data retrieval, particularly when multiple data queriers are involved. This necessitates a protocol that...
Stablecoins, a type of cryptocurrency pegged to another asset to maintain a stable price, have become an important part of the cryptocurrency ecosystem. Prior studies have primarily focused on examining the security of stablecoins from technical and theoretical perspectives, with limited investigation into users’ risk perceptions and security behaviors in stablecoin practices. To address this research gap, we conducted a mixed-method study that included constructing a stablecoin interaction...
Overpass Channels presents a groundbreaking approach to blockchain scalability, offering a horizontally scalable, privacy-enhanced payment network with independent verification, fluid liquidity, and robust censorship resistance. This paper introduces a novel architecture that leverages zero-knowledge proofs, specifically zk-SNARKs, to ensure transaction validity and privacy while enabling unprecedented throughput and efficiency. By eliminating the need for traditional consensus mechanisms...
In scenarios where a seller holds sensitive data $x$, like employee / patient records or ecological data, and a buyer seeks to obtain an evaluation of specific function $f$ on this data, solutions in trustless digital environments like blockchain-based Web3 systems typically fall into two categories: (1) Smart contract-powered solutions and (2) cryptographic solutions leveraging tools such as adaptor signatures. The former approach offers atomic transactions where the buyer learns the...
In the rapidly evolving Web3 ecosystem, transparent auditing has emerged as a critical component for both applications and users. However, there is a significant gap in understanding how users perceive this new form of auditing and its implications for Web3 security. Utilizing a mixed-methods approach that incorporates a case study, user interviews, and social media data analysis, our study leverages a risk perception model to comprehensively explore Web3 users' perceptions regarding...
Groth16 is a pairing-based zero-knowledge proof scheme that has a constant proof size and an efficient verification algorithm. Bitcoin Script is a stack-based low-level programming language that is used to lock and unlock bitcoins. In this paper, we present a practical implementation of the Groth16 verifier in Bitcoin Script deployable on the mainnet of a Bitcoin blockchain called BSV. Our result paves the way for a framework of verifiable computation on Bitcoin: a Groth16 proof is generated...
Frontrunning is rampant in blockchain ecosystems, yielding attackers profits that have already soared into several million. Most existing frontrunning attacks focus on manipulating transaction order (namely, prioritizing attackers' transactions before victims' transactions) $\textit{within}$ a block. However, for the emerging directed acyclic graph (DAG)-based blockchains, these intra-block frontrunning attacks may not fully reveal the frontrunning vulnerabilities as they introduce block...
The problem of reliable/secure all-to-all communication over low-degree networks has been essential for communication-local (CL) n-party MPC (i.e., MPC protocols where every party directly communicates only with a few, typically polylogarithmic in n, parties) and more recently for communication over ad hoc networks, which are used in blockchain protocols. However, a limited number of adaptively secure solutions exist, and they all make relatively strong assumptions on the ability of parties...
Blockchain-enabled digital currency systems have typically operated in isolation, lacking necessary mechanisms for seamless interconnection. Consequently, transferring assets across distinct currency systems remains a complex challenge, with existing schemes often falling short in ensuring security, privacy, and practicality. This paper proposes P2C2T -- a privacy-preserving cross-chain transfer scheme. It is the first scheme to address atomicity, unlinkability, indistinguishability,...
Ever since the seminal work of Diffie and Hellman, cryptographic (cyclic) groups have served as a fundamental building block for constructing cryptographic schemes and protocols. The security of these constructions can often be based on the hardness of (cyclic) group-based computational assumptions. Then, the generic group model (GGM) has been studied as an idealized model (Shoup, EuroCrypt 1997), which justifies the hardness of many (cyclic) group-based assumptions and shows the limits of...
Merkle trees play a crucial role in blockchain networks in organizing network state. They allow proving a particular value of an entry in the state to a node that maintains only the root of the Merkle trees, a hash-based signature computed over the data in a hierarchical manner. Verification of particular state entries is crucial in reaching a consensus on the execution of a block where state information is required in the processing of its transactions. For instance, a payment transaction...
Recently, Masny and Rindal [MR19] formalized a notion called Endemic Oblivious Transfer (EOT), and they proposed a generic transformation from Non-Interactive Key Exchange (NIKE) to EOT with standalone security in the random oracle (RO) model. However, from the model level, the relationship between idealized NIKE and idealized EOT and the relationship between idealized elementary public key primitives have been rarely researched. In this work, we investigate the relationship between ideal...
Light clients implement a simple solution for Bitcoin's scalability problem, as they do not store the entire blockchain but only the state of particular addresses of interest. To be able to keep track of the updated state of their addresses, light clients rely on full nodes to provide them with the required information. To do so, they must reveal information about the addresses they are interested in. This paper studies the two most common light client implementations, SPV and Neutrino with...
We propose the first constructions of anonymous tokens with decentralized issuance. Namely, we consider a dynamic set of signers/issuers; a user can obtain a token from any subset of the signers, which is publicly verifiable and unlinkable to the issuance process. To realize this new primitive we formalize the notion of Blind Multi-Signatures (BMS), which allow a user to interact with multiple signers to obtain a (compact) signature; even if all the signers collude they are unable to link a...
Blockchain applications in finance and identity management increasingly require scalable and privacy-preserving solutions. Cryptographic commitments secure sensitive data on-chain, but verifying properties of these commitments efficiently remains challenging, particularly in large-scale scenarios. For multiple commitments, CP-SNARKs, a family of zk-SNARKs, enhance prover efficiency by shifting large-cost operations outside the circuit and verifying linkages between commitments, but incur...
This paper introduces a ZKP (zero-knowledge proof) based state update system, where each block contains a SNARK proof aggregated from the user generated zkVM (zero knowledge virtual machine) proofs. It enables users to generate state update proofs in their local machines, contributing to a secure, decentralized verification process. Our main contribution in this paper, the recursive proofs system, addresses scalability by recursively verifying user proofs and aggregating them in a...
Payment channel networks (PCNs) are a leading method to scale the transaction throughput in cryptocurrencies. Two participants can use a bidirectional payment channel for making multiple mutual payments without committing them to the blockchain. Opening a payment channel is a slow operation that involves an on-chain transaction locking a certain amount of funds. These aspects limit the number of channels that can be opened or maintained. Users may route payments through a multi-hop path and...
In this work, we consider the setting where one or more users with low computational resources would lie to outsource the task of proof generation for SNARKs to one external entity, named Prover. We study the scenario in which Provers have access to all statements and witnesses to be proven beforehand. We take a different approach to proof aggregation and design a new protocol that reduces simultaneously proving time and communication complexity, without going through recursive proof...
Cryptocurrencies have gained high popularity in recent years, with over 9000 of them, including major ones such as Bitcoin and Ether. Each cryptocurrency is implemented on one blockchain or over several such networks. Recently, various technologies known as blockchain interoperability have been developed to connect these different blockchains and create an interconnected blockchain ecosystem. This paper aims to provide insights on the blockchain ecosystem and the connection...
Payment Channel Networks (PCNs) have been highlighted as viable solutions to address the scalability issues in current permissionless blockchains. They facilitate off-chain transactions, significantly reducing the load on the blockchain. However, the extensive reuse of multi-hop routes in the same direction poses a risk of channel depletion, resulting in involved channels becoming unidirectional or even closing, thereby compromising the sustainability and scalability of PCNs. Even more...
A threshold key encapsulation mechanism (TKEM) facilitates the secure distribution of session keys among multiple participants, allowing key recovery through a threshold number of shares. TKEM has gained significant attention, especially for decentralized systems, including blockchains. However, existing constructions often rely on trusted setups, which pose security risks such as a single point of failure, and are limited by fixed participant numbers and thresholds. To overcome this, we...
Rollups are special applications on distributed state machines (aka blockchains) for which the underlying state machine only logs, but does not execute transactions. Rollups have become a popular way to scale applications on Ethereum and there is now growing interest in running rollups on Bitcoin. Rollups scale throughput and reduce transaction costs by using auxiliary machines that have higher throughput and lower cost of executing transactions than the underlying blockchain. State updates...
Order fairness in the context of distributed ledgers has received recently significant attention due to a range of attacks that exploit the reordering and adaptive injection of transactions (violating what is known as “input causality”). To address such concerns an array of definitions for order fairness has been put forth together with impossibility and feasibility results highlighting the difficulty and multifaceted nature of fairness in transaction serialization. Motivated by this we...
Verifiable Timed Signatures (VTS) are cryptographic constructs that enable obtaining a signature at a specific time in the future and provide evidence that the signature is legitimate. This framework particularly finds utility in applications such as payment channel networks, multiparty signing operations, or multiparty computation, especially within blockchain architectures. Currently, VTS schemes are based on signature algorithms such as BLS signature, Schnorr signature, and ECDSA. These...
Many applications rely on accumulators and authenticated dictionaries, from timestamping certificate transparency and memory checking to blockchains and privacy-preserving decentralized electronic money, while Merkle tree and its variants are efficient for arbitrary element membership proofs, non-membership proofs, i.e., universal accumulators, and key-based membership proofs may require trees up to 256 levels for 128 bits of security, assuming binary tree, which makes it inefficient in...
Building a Consensus platform for shared sequencing can power an ecosystem of layer-2 solutions such as rollups which are crucial for scaling blockchains (e.g.,Ethereum). However, it drastically differs from conventional Consensus for blockchains in two key considerations: • (No) Execution: A shared sequencing platform is not responsible for pre-validating blocks nor for processing state updates. Therefore, agreement is formed on a sequence of certificates of block data-availability (DA)...
Blockchain technology ensures accountability, transparency, and redundancy in critical applications, includ- ing IoT with embedded systems. However, the reliance on public-key cryptography (PKC) makes blockchain vulnerable to quantum computing threats. This paper addresses the urgent need for quantum-safe blockchain solutions by integrating Post- Quantum Cryptography (PQC) into blockchain frameworks. Utilizing algorithms from the NIST PQC standardization pro- cess, we aim to fortify...
This report presents the security protocols and general trust architecture of the SMARTEDGE swarm computing platform. Part 1 describes the coordination protocols for use in a swarm production environment, e.g. a smart factory, and Part 2 deals with crowd-sensing scenarios characteristic of traffic-control swarms.
In crowdsourcing systems, requesters publish tasks, and interested workers provide answers to get rewards. Worker anonymity motivates participation since it protects their privacy. Anonymity with unlinkability is an enhanced version of anonymity because it makes it impossible to ``link'' workers across the tasks they participate in. Another core feature of crowdsourcing systems is worker quality which expresses a worker's trustworthiness and quantifies their historical performance. In this...
Coercion is a challenging and multi-faceted threat that prevents people from expressing their will freely. Similarly, vote-buying does to undermine the foundation of free democratic elections. These threats are especially dire for remote electronic voting, which relies on voters to express their political will freely but happens in an uncontrolled environment outside the polling station and the protection of the ballot booth. However, electronic voting in general, both in-booth and remote,...
Handling congestion in blockchain systems is a fundamental problem given that the security and decentralization objectives of such systems lead to designs that compromise on (horizontal) scalability (what sometimes is referred to as the ``blockchain trilemma''). Motivated by this, we focus on the question whether it is possible to design a transaction inclusion policy for block producers that facilitates fee and delay predictability while being incentive compatible at the same time....
We show that the data storage scheme [IEEE/ACM Trans. Netw., 2023, 31(4), 1550-1565] is flawed due to the false secret sharing protocol, which requires that some random $4\times 4$ matrixes over the finite field $F_p$ (a prime $p$) are invertible. But we find its mathematical proof for invertibility is incorrect. To fix this flaw, one needs to check the invertibility of all 35 matrixes so as to generate the proper 7 secret shares.
Payment channels are one of the most prominent off-chain scaling solutions for blockchain systems. However, regulatory institutions have difficulty embracing them, as the channels lack insights needed for Anti-Money Laundering (AML) auditing purposes. Our work tackles the problem of a formal reliable and controllable inspection of off-ledger payment channels, by offering a novel approach for maintaining and reliably auditing statistics of payment channels. We extend a typical trustless Layer...
Model quantization has become a common practice in machine learning (ML) to improve efficiency and reduce computational/communicational overhead. However, adopting quantization in privacy-preserving machine learning (PPML) remains challenging due to the complex internal structure of quantized operators, which leads to inefficient protocols under the existing PPML frameworks. In this work, we propose a new PPML paradigm that is tailor-made for and can benefit from quantized models. Our...
Verifiable Random Functions (VRFs) are cryptographic primitives that generate unpredictable randomness along with proofs that are verifiable, a critical requirement for blockchain applications in decentralized finance, online gaming, and more. Existing VRF constructions often rely on centralized entities, creating security vulnerabilities. Distributed VRFs (DVRFs) offer a decentralized alternative but face challenges like large proof sizes or dependence on computationally expensive bilinear...
Cryptographic wallets are an essential tool in Blockchain networks to ensure the secure storage and maintenance of an user's cryptographic keys. Broadly, wallets can be divided into three categories, namely custodial, non-custodial, and shared-custodial wallets. The first two are centralized solutions, i.e., the wallet is operated by a single entity, which inherently introduces a single point of failure. Shared-custodial wallets, on the other hand, are maintained by two independent parties,...
This paper reports the experimental results related to lineage event storage via smart contracts deployed on private and public blockchain. In our experiments we measure the following three metrics: the cost to deploy the storage smart contract on the blockchain, which measures the initial expenditure, typically in gas units, required to deploy the smart contract that facilitates lineage event storage, then the time and gas costs needed to store a lineage event. We investigated both single...
Blockchain consensus, a.k.a. BFT SMR, are protocols enabling $n$ processes to decide on an ever-growing chain. The fastest known asynchronous one is called 2-chain VABA (PODC'21 and FC'22), and is used as fallback chain in Abraxas* (CCS'23). It has a claimed $9.5\delta$ expected latency when used for a single shot instance, a.k.a. an MVBA. We exhibit attacks breaking it. Hence, the title of the fastest asynchronous MVBA with quadratic messages complexity goes to sMVBA (CCS'22), with...
Cross-chain Decentralized Applications (dApps) are increasingly popular for their ability to handle complex tasks across various blockchains, extending beyond simple asset transfers or swaps. However, ensuring all dependent transactions execute correctly together, known as complete atomicity, remains a challenge. Existing works provide financial atomicity, protecting against monetary loss, but lack the ability to ensure correctness for complex tasks. In this paper, we introduce Avalon, a...
We develop a distributed service for generating correlated randomness (e.g. permutations) for multiple parties, where each party’s output is private but publicly verifiable. This service provides users with a low-cost way to play online poker in real-time, without a trusted party. Our service is backed by a committee of compute providers, who run a multi-party computation (MPC) protocol to produce an (identity-based) encrypted permutation of a deck of cards, in an offline phase well ahead...
An adaptor signatures (AS) scheme is an extension of digital signatures that allows the signer to generate a pre-signature for an instance of a hard relation. This pre-signature can later be adapted to a full signature with a corresponding witness. Meanwhile, the signer can extract a witness from both the pre-signature and the signature. AS have recently garnered more attention due to its scalability and interoperability. Dai et al. [INDOCRYPT 2022] proved that AS can be constructed for any...
A sequential function is, informally speaking, a function $f$ for which a massively parallel adversary cannot compute "substantially" faster than an honest user with limited parallel computation power. Sequential functions form the backbone of many primitives that are extensively used in blockchains such as verifiable delay functions (VDFs) and time-lock puzzles. Despite this widespread practical use, there has been little work studying the complexity or theory of sequential...
Layer-two blockchain protocols emerged to address scalability issues related to fees, storage cost, and confirmation delay of on-chain transactions. They aggregate off-chain transactions into a fewer on-chain ones, thus offering immediate settlement and reduced transaction fees. To preserve security of the underlying ledger, layer-two protocols often work in a collateralized model; resources are committed on-chain to backup off-chain activities. A fundamental challenge that arises in this...
Automated market makers (AMMs) are a form of decentralized cryptocurrency exchanges that have attracted huge interest lately. They are considered a prime example of Decentralized Finance (DeFi) applications, a large category under Web 3.0. Their popularity and high trading activity have resulted in millions of on-chain transactions leading to serious scalability issues in terms of throughput and on-chain state size. Existing scalability solutions, when employed in the context of AMMs, are...
Cryptocurrencies and blockchain technology provide an innovative model for reshaping digital services. Driven by the movement toward Web 3.0, recent systems started to provide distributed services, such as computation outsourcing or file storage, on top of the currency exchange medium. By allowing anyone to join and collect cryptocurrency payments for serving others, these systems create decentralized markets for trading digital resources. Yet, there is still a big gap between the promise of...
This Systematization of Knowledge conducts a survey of contemporary distributed blockchain protocols, with the aim of identifying cryptographic and design techniques which practically enable both expressive programmability and user data confidentiality. To facilitate a framing which supports the comparison of concretely very different protocols, we define an epoch-based computational model in the form of a flexible UC-style ideal functionality which divides the operation of...
Distributed randomness beacons (DRBs) are fundamental for various decentralised applications, such as consensus protocols, decentralised gaming and lotteries, and collective governance protocols. These applications are heavily used on modern blockchain platforms. This paper presents the so far most efficient direct construction and implementation of a non-interactive distributed verifiable random function (NI-DVRF) that is fully compatible with Ethereum. Our NI-DVRF scheme adopts...
Security of blockchain technologies primarily relies on decentralization making them resilient against a subset of entities being taken down or corrupt. Blockchain scaling, crucial to decentralisation, has been addressed by architectural changes: i.e., the load of the nodes is reduced by parallelisation, called sharding or by taking computation load off the main blockchain via rollups. Both sharding and rollups have limitations in terms of decentralization and security. A crucial component...
Web3 applications, such as on-chain games, NFT minting, and leader elections necessitate access to unbiased, unpredictable, and publicly verifiable randomness. Despite its broad use cases and huge demand, there is a notable absence of comprehensive treatments of on-chain verifiable randomness services. To bridge this, we offer an extensive formal analysis of on-chain verifiable randomness services. We present the $first$ formalization of on-chain verifiable randomness in the...
A contingent payment protocol involves two mutually distrustful parties, a buyer and a seller, operating on the same blockchain, and a digital product, whose ownership is not tracked on a blockchain (e.g. a digital book). The buyer holds coins on the blockchain and transfers them to the seller in exchange for the product. However, if the blockchain does not hide transaction details, any observer can learn that a buyer purchased some product from a seller. In this work, we take...
The trading of data is becoming increasingly important as it holds substantial value. A blockchain-based data marketplace can provide a secure and transparent platform for data exchange. To facilitate this, developing a fair data exchange protocol for digital goods has garnered considerable attention in recent decades. The Zero Knowledge Contingent Payment (ZKCP) protocol enables trustless fair exchanges with the aid of blockchain and zero-knowledge proofs. However, applying this protocol in...
Threshold signatures enable any subgroup of predefined cardinality $t$ out of a committee of $n$ participants to generate a valid, aggregated signature. Although several $(t,n)$-threshold signature schemes exist, most of them assume that the threshold $t$ and the set of participants do not change over time. Practical applications of threshold signatures might benefit from the possibility of updating the threshold or the committee of participants. Examples of such applications are...
As blockchain technology continues to transform the realm of digital transactions, scalability has emerged as a critical issue. This challenge has spurred the creation of innovative solutions, particularly Layer 2 scalability techniques like rollups. Among these, ZK-Rollups are notable for employing Zero-Knowledge Proofs to facilitate prompt on-chain transaction verification, thereby improving scalability and efficiency without sacrificing security. Nevertheless, the intrinsic complexity of...