390 results sorted by ID
Asymptotic improvements to provable algorithms for the code equivalence problem
Huck Bennett, Drisana Bhatia, Jean-François Biasse, Medha Durisheti, Lucas LaBuff, Vincenzo Pallozzi Lavorante, Philip Waitkevich
Attacks and cryptanalysis
We present several new provable algorithms for two variants of the code equivalence problem on linear error-correcting codes, the Linear Code Equivalence Problem (LCE) and the Permutation Code Equivalence Problem (PCE). Specifically, for arbitrary codes of block length $n$ and dimension $k$ over any finite field $\mathbb{F}_q$, we show:
1) A deterministic algorithm running in $2^{n + o(n+q)}$ time for LCE.
2) A randomized algorithm running in $2^{n/2 + o(n+q)}$ time for LCE and PCE.
3) A...
Quantum function secret sharing
Alex B. Grilo, Ramis Movassagh
Foundations
We propose a quantum function secret sharing scheme in which the communication is exclusively classical. In this primitive, a classical dealer distributes a secret quantum circuit $C$ by providing shares to $p$ quantum parties. The parties on an input state $\ket{\psi}$ and a projection $\Pi$, compute values $y_i$ that they then classically communicate back to the dealer, who can then compute $\lVert\Pi C\ket{\psi}\rVert^2$ using only classical resources. Moreover, the shares do not leak...
Signatures with Tight Adaptive Corruptions from Search Assumptions
Keitaro Hashimoto, Wakaha Ogata, Yusuke Sakai
Public-key cryptography
We construct the first tightly secure signature schemes in the multi-user setting with adaptive corruptions from classical discrete logarithm, RSA, factoring, or post-quantum group action discrete logarithm assumption. In contrast to our scheme, the previous tightly secure schemes are based on the decisional assumption (e.g., (group action) DDH) or interactive search assumptions (e.g., one-more CDH).
The security of our schemes is independent of the number of users, signing queries, and...
Additive Randomized Encodings from Public Key Encryption
Nir Bitansky, Saroja Erabelli, Rachit Garg
Cryptographic protocols
Introduced by Halevi, Ishai, Kushilevitz, and Rabin (CRYPTO 2023), Additive randomized encodings (ARE) reduce the computation of a $k$-party function $f(x_1,\dots,x_k)$ to locally computing encodings $\hat x_i$ of each input $x_i$ and then adding them together over some Abelian group into an output encoding $\hat y = \sum \hat x_i$, which reveals nothing but the result. The appeal of ARE comes from the simplicity of the non-local computation, involving only addition. This gives rise for...
Time-Lock Puzzles from Lattices
Shweta Agrawal, Giulio Malavolta, Tianwei Zhang
Foundations
Time-lock puzzles (TLP) are a cryptographic tool that allow one to encrypt a message into the future, for a predetermined amount of time $T$. At present, we have only two constructions with provable security: One based on the repeated squaring assumption and the other based on obfuscation. Basing TLP on any other assumption is a long-standing question, further motivated by the fact that known constructions are broken by quantum algorithms.
In this work, we propose a new approach to...
The Meta-Complexity of Secret Sharing
Benny Applebaum, Oded Nir
Cryptographic protocols
A secret-sharing scheme allows the distribution of a secret $s$ among $n$ parties, such that only certain predefined “authorized” sets of parties can reconstruct the secret, while all other “unauthorized” sets learn nothing about $s$. The collection of authorized/unauthorized sets is defined by a monotone function $f: \{0,1\}^n \rightarrow \{0,1\}$. It is known that any monotone function can be realized by a secret-sharing scheme; thus, the smallest achievable \emph{total share size},...
Simulation Secure Multi-Input Quadratic Functional Encryption: Applications to Differential Privacy
Ferran Alborch Escobar, Sébastien Canard, Fabien Laguillaumie
Applications
Multi-input functional encryption is a primitive that allows for the evaluation of an $\ell$-ary function over multiple ciphertexts, without learning any information about the underlying plaintexts. This type of computation is useful in many cases where one has to compute over encrypted data, such as privacy-preserving cloud services, federated learning, or more generally delegation of computation from multiple clients. It has recently been shown by Alborch et al. in PETS '24 to be useful to...
Cryptographic Commitments on Anonymizable Data
Xavier Bultel, Céline Chevalier, Charlène Jojon, Diandian Liu, Benjamin Nguyen
Cryptographic protocols
Local Differential Privacy (LDP) mechanisms consist of (locally) adding controlled noise to data in order to protect the privacy of their owner. In this paper, we introduce a new cryptographic primitive called LDP commitment. Usually, a commitment ensures that the committed value cannot be modified before it is revealed. In the case of an LDP commitment, however, the value is revealed after being perturbed by an LDP mechanism. Opening an LDP commitment therefore requires a proof that the...
Ideal Pseudorandom Codes
Omar Alrabiah, Prabhanjan Ananth, Miranda Christ, Yevgeniy Dodis, Sam Gunn
Foundations
Pseudorandom codes are error-correcting codes with the property that no efficient adversary can distinguish encodings from uniformly random strings. They were recently introduced by Christ and Gunn [CRYPTO 2024] for the purpose of watermarking the outputs of randomized algorithms, such as generative AI models. Several constructions of pseudorandom codes have since been proposed, but none of them are robust to error channels that depend on previously seen codewords. This stronger kind of...
Succinct Randomized Encodings from Laconic Function Evaluation, Faster and Simpler
Nir Bitansky, Rachit Garg
Foundations
Succinct randomized encodings allow encoding the input $x$ of a time-$t$ uniform computation $M(x)$ in sub-linear time $o(t)$. The resulting encoding $\tilde{x}$ allows recovering the result of the computation $M(x)$, but hides any other information about $x$. These encodings have powerful applications, including time-lock puzzles, reducing communication in MPC, and bootstrapping advanced encryption schemes.
Until not long ago, the only known constructions were based on...
Quantum One-Time Protection of any Randomized Algorithm
Sam Gunn, Ramis Movassagh
Foundations
The meteoric rise in power and popularity of machine learning models dependent on valuable training data has reignited a basic tension between the power of running a program locally and the risk of exposing details of that program to the user. At the same time, fundamental properties of quantum states offer new solutions to data and program security that can require strikingly few quantum resources to exploit, and offer advantages outside of mere computational run time. In this work, we...
Is Periodic Pseudo-randomization Sufficient for Beacon Privacy?
Liron David, Avinatan Hassidim, Yossi Matias, Moti Yung
Attacks and cryptanalysis
In this paper, we investigate whether the privacy mechanism of periodically changing the pseudorandom identities of Bluetooth Low Energy (BLE) beacons is sufficient to ensure privacy.
We consider a new natural privacy notion for BLE broadcasting beacons which we call ``Timed-sequence- indistinguishability'' of beacons. This new privacy definition is stronger than the well-known indistinguishability, since it considers not just the advertisements' content, but also the advertisements'...
Pseudorandom Obfuscation and Applications
Pedro Branco, Nico Döttling, Abhishek Jain, Giulio Malavolta, Surya Mathialagan, Spencer Peters, Vinod Vaikuntanathan
Foundations
We introduce the notion of pseudorandom obfuscation (PRO), a way to obfuscate (keyed) pseudorandom functions $f_K$ in an average-case sense. We introduce several variants of pseudorandom obfuscation and show constructions and applications. For some of our applications that can be achieved using full-fledged indistinguishability obfuscation (iO), we show constructions using lattice-based assumptions alone; the other applications we enable using PRO are simply not known even assuming iO. We...
Secure Computation with Parallel Calls to 2-ary Functions
Varun Narayanan, Shubham Vivek Pawar, Akshayaram Srinivasan
Cryptographic protocols
Reductions are the workhorses of cryptography. They allow constructions of complex cryptographic primitives from simple building blocks. A prominent example is the non-interactive reduction from securely computing a ``complex" function $f$ to securely computing a ``simple" function $g$ via randomized encodings.
Prior work equated simplicity with functions of small degree. In this work, we consider a different notion of simplicity where we require $g$ to only take inputs from a small...
LeOPaRd: Towards Practical Post-Quantum Oblivious PRFs via Interactive Lattice Problems
Muhammed F. Esgin, Ron Steinfeld, Erkan Tairi, Jie Xu
Cryptographic protocols
In this work, we introduce a more efficient post-quantum oblivious PRF (OPRF) design, called LeOPaRd. Our proposal is round-optimal and supports verifiability and partial obliviousness, all of which are important for practical applications. The main technical novelty of our work is a new method for computing samples of MLWE (module learning with errors) in a two-party setting. To do this, we introduce a new family of interactive lattice problems, called interactive MLWE and rounding with...
NeutronNova: Folding everything that reduces to zero-check
Abhiram Kothapalli, Srinath Setty
Foundations
We introduce NeutronNova, a new folding scheme for the zero-check relation: an instance-witness pair is in the zero-check relation if a corresponding multivariate polynomial evaluates to zero for all inputs over a suitable Boolean hypercube. The folding scheme is a two-round protocol, and it internally invokes a \emph{single} round of the sum-check protocol. The folding scheme is more efficient than prior state-of-the-art schemes and directly benefits from recent improvements to the...
Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement
Daniel Collins, Yuval Efron, Jovan Komatovic
Cryptographic protocols
It is well known that a trusted setup allows one to solve the Byzantine agreement problem in the presence of $t<n/2$ corruptions, bypassing the setup-free $t<n/3$ barrier. Alas, the overwhelming majority of protocols in the literature have the caveat that their security crucially hinges on the security of the cryptography and setup, to the point where if the cryptography is broken, even a single corrupted party can violate the security of the protocol. Thus these protocols provide higher...
Detecting and Correcting Computationally Bounded Errors: A Simple Construction Under Minimal Assumptions
Jad Silbak, Daniel Wichs
Foundations
We study error detection and error correction in a computationally bounded world, where errors are introduced by an arbitrary polynomial time adversarial channel. We consider codes where the encoding procedure uses random coins and define two distinct variants: (1) in randomized codes, fresh randomness is chosen during each encoding operation and is unknown a priori, while (2) in self-seeded codes, the randomness of the encoding procedure is fixed once upfront and is known to the adversary....
TentLogiX: 5-bit Chaos-Driven S-Boxes for Lightweight Cryptographic Systems
Maha Allouzi, Arefeh Rahaei
Cryptographic protocols
Cryptography is a crucial method for ensuring the security of communication and data transfers across networks. While it excels on devices with abundant resources, such as PCs, servers, and smartphones, it may encounter challenges when applied to resource-constrained Internet of Things (IoT) devices like Radio Frequency Identification (RFID) tags and sensors. To address this issue, a demand arises for a lightweight variant of cryptography known as lightweight cryptography (LWC).
In...
Actively Secure Polynomial Evaluation from Shared Polynomial Encodings
Pascal Reisert, Marc Rivinius, Toomas Krips, Sebastian Hasler, Ralf Küsters
Cryptographic protocols
Many of the currently best actively secure Multi-Party Computation (MPC) protocols like SPDZ (Damgård et al., CRYPTO 2012) and improvements thereof use correlated randomness to speed up the time-critical online phase. Although many of these protocols still rely on classical Beaver triples, recent results show that more complex correlations like matrix or convolution triples lead to more efficient evaluations of the corresponding operations, i.e. matrix multiplications or tensor convolutions....
LAMA: Leakage-Abuse Attacks Against Microsoft Always Encrypted
Ryan Seah, Daren Khu, Alexander Hoover, Ruth Ng
Attacks and cryptanalysis
Always Encrypted (AE) is a Microsoft SQL Server feature that allows clients to encrypt sensitive data inside client applications and ensures that the sensitive data is hidden from untrusted servers and database administrators. AE offers two column-encryption options: deterministic encryption (DET) and randomized encryption (RND). In this paper, we explore the security implications of using AE with both DET and
RND encryption modes by running Leakage Abuse Attacks (LAAs) against the system....
Efficient Differentially Private Set Intersection
Xinyu Peng, Yufei Wang, Weiran Liu, Liqiang Peng, Feng Han, Zhen Gu, Jianling Sun, Yuan Hong
Implementation
Private Set Intersection (PSI) enables a sender and a receiver to jointly compute the intersection of their sets without disclosing non-trivial information about other items. However, depending on the context of joint data analysis, information derived from the items in the intersection may also be considered sensitive. To protect such sensitive information, prior work proposed Differentially private PSI (DPSI), which can be instantiated with circuit-PSI using Fully Homomorphic Encryption....
Cryptanalysis of Rank-2 Module-LIP with Symplectic Automorphisms
Hengyi Luo, Kaijie Jiang, Yanbin Pan, Anyu Wang
Attacks and cryptanalysis
At Eurocrypt'24, Mureau et al. formally defined the Lattice Isomorphism Problem for module lattices (module-LIP) in a number field $\mathbb{K}$, and proposed a heuristic randomized algorithm solving module-LIP for modules of rank 2 in $\mathbb{K}^2$ with a totally real number field $\mathbb{K}$, which runs in classical polynomial time for a large class of modules and a large class of totally real number field under some reasonable number theoretic assumptions. In this paper, by introducing a...
Randomized Distributed Function Computation with Semantic Communications: Applications to Privacy
Onur Gunlu
Foundations
Randomized distributed function computation refers to remote function computation where transmitters send data to receivers which compute function outputs that are randomized functions of the inputs. We study the applications of semantic communications in randomized distributed function computation to illustrate significant reductions in the communication load, with a particular focus on privacy. The semantic communication framework leverages generalized remote source coding methods, where...
Consolidated Linear Masking (CLM): Generalized Randomized Isomorphic Representations, Powerful Degrees of Freedom and Low(er)-cost
Itamar Levi, Osnat Keren
Implementation
Masking is a widely adopted countermeasure against side-channel analysis (SCA) that protects cryptographic implementations from information leakage. However, current masking schemes often incur significant overhead in terms of electronic cost. RAMBAM, a recently proposed masking technique that fits elegantly with the AES algorithm, offers ultra-low latency/area by utilizing redundant representations of finite field elements. This paper presents a comprehensive generalization of RAMBAM and...
Quantum Evolving Secret Sharing for General Access Structures
Efrat Cohen, Anat Paskin-Cherniavsky
Foundations
In the useful and well studied model of secret-sharing schemes, there are $n$ parties and a dealer, which holds a secret. The dealer applies some randomized algorithm to the secret, resulting in $n$ strings, called shares; it gives the $i$'th share to the $i$'th party. There are two requirements. (1) correctness: some predefined subsets of the parties can jointly reconstruct the secret from their shares, and (2) security: any other set gets no information on the secret. The collection of...
Early Stopping Byzantine Agreement in $(1+\epsilon) \cdot f$ Rounds
Fatima Elsheimy, Julian Loss, Charalampos Papamanthou
Cryptographic protocols
In this paper, we present two early stopping Byzantine agreement protocols in the authenticated setting against a corrupt minority $t < n/2$, where $t$ represents the maximum number of malicious parties. Early stopping protocols ensure termination within a number of rounds determined solely by the actual number of malicious nodes $f$ present during execution, irrespective of $t$.
Our first protocol is deterministic and ensures early stopping termination in $ (d+5) \cdot (\lfloor f/d...
Instance-Hiding Interactive Proofs
Changrui Mu, Prashant Nalini Vasudevan
Foundations
In an Instance-Hiding Interactive Proof (IHIP) [Beaver et al. CRYPTO 90], an efficient verifier with a _private_ input x interacts with an unbounded prover to determine whether x is contained in a language L. In addition to completeness and soundness, the instance-hiding property requires that the prover should not learn anything about x in the course of the interaction. Such proof systems capture natural privacy properties, and may be seen as a generalization of the influential concept of...
Private Analytics via Streaming, Sketching, and Silently Verifiable Proofs
Mayank Rathee, Yuwen Zhang, Henry Corrigan-Gibbs, Raluca Ada Popa
Cryptographic protocols
We present Whisper, a system for privacy-preserving collection of aggregate statistics. Like prior systems, a Whisper deployment consists of a small set of non-colluding servers; these servers compute aggregate statistics over data from a large number of users without learning the data of any individual user. Whisper’s main contribution is that its server- to-server communication cost and its server-side storage costs scale sublinearly with the total number of users. In particular, prior...
On amortization techniques for FRI-based SNARKs
Albert Garreta, Hayk Hovhanissyan, Aram Jivanyan, Ignacio Manzur, Isaac Villalobos, Michał Zając
Cryptographic protocols
We present two techniques to improve the computational and/or communication costs of STARK proofs: packing and modular split-and-pack.
Packing allows to generate a single proof of the satisfiability of several constraints. We achieve this by packing the evaluations of all relevant polynomials in the same Merkle leaves, and combining all DEEP FRI functions into a single randomized validity function. Our benchmarks show that packing reduces the verification time and proof size compared...
Fault Attack on SQIsign
JeongHwan Lee, Donghoe Heo, Hyeonhak Kim, Gyusang Kim, Suhri Kim, Heeseok Kim, Seokhie Hong
Attacks and cryptanalysis
In this paper, we introduce the first fault attack on SQIsign. By injecting a fault into the ideal generator during the commitment phase, we demonstrate a meaningful probability of inducing the generation of order $\mathcal{O}_0$. The probability is bounded by one parameter, the degree of commitment isogeny. We also show that the probability can be reasonably estimated by assuming uniform randomness of a random variable, and provide empirical evidence supporting the validity of this...
Arctic: Lightweight and Stateless Threshold Schnorr Signatures
Chelsea Komlo, Ian Goldberg
Public-key cryptography
Threshold Schnorr signatures are seeing increased adoption in practice, and offer practical defenses against single points of failure. However, one challenge with existing randomized threshold Schnorr signature schemes is that signers must carefully maintain secret state across signing rounds, while also ensuring that state is deleted after a signing session is completed. Failure to do so will result in a fatal key-recovery attack by re-use of nonces.
While deterministic threshold...
Re-Randomized FROST
Conrado P. L. Gouvea, Chelsea Komlo
We define a (small) augmentation to the FROST threshold signature scheme that additionally allows for re-randomizable public and secret keys. We build upon the notion of re-randomizable keys in the literature, but tailor this capability when the signing key is secret-shared among a set of mutually trusted parties. We do not make any changes to the plain FROST protocol, but instead define additional algorithms to allow for randomization of the threshold public key and participant’s individual...
Gap MCSP is not (Levin) NP-complete in Obfustopia
Noam Mazor, Rafael Pass
Foundations
We demonstrate that under believable cryptographic hardness assumptions, Gap versions of standard meta-complexity problems, such as the Minimum Circuit Size problem (MCSP) and the Minimum Time-Bounded Kolmogorov Complexity problem (MKTP) are not NP-complete w.r.t. Levin (i.e., witness-preserving many-to-one) reductions.
In more detail:
- Assuming the existence of indistinguishability obfuscation, and subexponentially-secure one-way functions, an appropriate Gap version of MCSP is not...
Leakage-Tolerant Circuits
Yuval Ishai, Yifan Song
Foundations
A leakage-resilient circuit for $f:\{0,1\}^n\to\{0,1\}^m$ is a randomized Boolean circuit $C$ mapping a randomized encoding of an input $x$ to an encoding of $y=f(x)$, such that applying any leakage function $L\in \cal L$ to the wires of $C$ reveals essentially nothing about $x$. A leakage-tolerant circuit achieves the stronger guarantee that even when $x$ and $y$ are not protected by any encoding, the output of $L$ can be simulated by applying some $L'\in \cal L$ to $x$ and $y$ alone....
Mirrored Commitment: Fixing ``Randomized Partial Checking'' and Applications
Paweł Lorek, Moti Yung, Filip Zagórski
Cryptographic protocols
Randomized Partial Checking (RPC} was proposed by Jakobsson, Juels, and Rivest and attracted attention as an efficient method of verifying the correctness of the mixing process in numerous applied scenarios. In fact,
RPC is a building block for many electronic voting schemes, including Prêt à Voter, Civitas, Scantegrity II as well as voting-systems used in real-world elections (e.g., in Australia). Mixing is also used in anonymous transfers of cryptocurrencies.
It turned out, however,...
Robust Additive Randomized Encodings from IO and Pseudo-Non-linear Codes
Nir Bitansky, Sapir Freizeit
Cryptographic protocols
Additive randomized encodings (ARE), introduced by Halevi, Ishai, Kushilevitz, and Rabin (CRYPTO 2023), reduce the computation of a k-party function $f (x_1, . . . , x_k )$ to locally computing encodings $\hat{x}_i$ of each input xi and then adding them together over some Abelian group into an output encoding $\hat{y} = ∑ \hat{x}_i$, which reveals nothing but the result. In robust ARE (RARE) the sum of any subset of $\hat{x}_i$, reveals only the residual function obtained by restricting the...
Collusion-Resilience in Transaction Fee Mechanism Design
Hao Chung, Tim Roughgarden, Elaine Shi
Foundations
Users bid in a transaction fee mechanism (TFM) to get their transactions included and confirmed by a blockchain protocol. Roughgarden (EC'21) initiated the formal treatment of TFMs and proposed three requirements: user incentive compatibility (UIC), miner incentive compatibility (MIC), and a form of collusion-resilience called OCA-proofness. Ethereum's EIP-1559 mechanism satisfies all three properties simultaneously when there is no contention between transactions, but loses the UIC property...
Distributed Randomness using Weighted VUFs
Sourav Das, Benny Pinkas, Alin Tomescu, Zhuolun Xiang
Cryptographic protocols
Shared randomness in blockchain can expand its support for randomized applications and can also help strengthen its security. Many existing blockchains rely on external randomness beacons for shared randomness, but this approach reduces fault tolerance, increases latency, and complicates application development. An alternate approach is to let the blockchain validators generate fresh shared randomness themselves once for every block. We refer to such a design as the \emph{on-chain}...
Correction Fault Attacks on Randomized CRYSTALS-Dilithium
Elisabeth Krahmer, Peter Pessl, Georg Land, Tim Güneysu
Attacks and cryptanalysis
After NIST’s selection of Dilithium as the primary future standard for quantum-secure digital signatures, increased efforts to understand its implementation security properties are required to enable widespread adoption on embedded devices. Concretely, there are still many open questions regarding the susceptibility of Dilithium to fault attacks. This is especially the case for Dilithium’s randomized (or hedged) signing mode, which, likely due to devastating implementation attacks on the...
Computational Differential Privacy for Encrypted Databases Supporting Linear Queries
Ferran Alborch Escobar, Sébastien Canard, Fabien Laguillaumie, Duong Hieu Phan
Applications
Differential privacy is a fundamental concept for protecting individual privacy in databases while enabling data analysis. Conceptually, it is assumed that the adversary has no direct access to the database, and therefore, encryption is not necessary. However, with the emergence of cloud computing and the «on-cloud» storage of vast databases potentially contributed by multiple parties, it is becoming increasingly necessary to consider the possibility of the adversary having (at least...
Benchmark Performance of Homomorphic Polynomial Public Key Cryptography for Key Encapsulation and Digital Signature Schemes
Randy Kuang, Maria Perepechaenko, Dafu Lou, Brinda Tank
Public-key cryptography
This paper conducts a comprehensive benchmarking analysis of the performance of two innovative cryptographic schemes: Homomorphic Polynomial Public Key (HPPK)-Key Encapsulation Mechanism (KEM) and Digital Signature (DS), recently proposed by Kuang et al. These schemes represent a departure from traditional cryptographic paradigms, with HPPK leveraging the security of homomorphic symmetric encryption across two hidden rings without reliance on NP-hard problems. HPPK can be viewed as a...
Beyond MPC-in-the-Head: Black-Box Constructions of Short Zero-Knowledge Proofs
Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, Mor Weiss
Foundations
In their seminal work, Ishai, Kushilevitz, Ostrovsky, and Sahai (STOC`07) presented the MPC-in-the-Head paradigm, which shows how to design Zero-Knowledge Proofs (ZKPs) from secure Multi-Party Computation (MPC) protocols. This paradigm has since then revolutionized and modularized the design of efficient ZKP systems, with far-reaching applications beyond ZKPs. However, to the best of our knowledge, all previous instantiations relied on fully-secure MPC protocols, and have not been able to...
Algebraic Attack on FHE-Friendly Cipher HERA Using Multiple Collisions
Fukang Liu, Abul Kalam, Santanu Sarkar, Willi Meier
Attacks and cryptanalysis
Fully homomorphic encryption (FHE) is an advanced cryptography technique to allow computations (i.e., addition and multiplication) over encrypted data. After years of effort, the performance of FHE has been significantly improved and it has moved from theory to practice. The transciphering framework is another important technique in FHE to address the issue of ciphertext expansion and reduce the client-side computational overhead. To apply the transciphering framework to the CKKS FHE scheme,...
Introducing Clapoti(s): Evaluating the isogeny class group action in polynomial time
Aurel Page, Damien Robert
Foundations
In this short note, we present a simplified (but slower) version Clapoti of Clapotis, whose full description will appear later. Let 𝐸/𝔽_𝑞 be an elliptic curve with an effective primitive orientation by a quadratic imaginary order 𝑅 ⊂ End(𝐸). Let 𝔞 be an invertible ideal in 𝑅. Clapoti is a randomized polynomial time algorithm in 𝑂 ((log Δ_𝑅 + log 𝑞)^𝑂(1) ) operations to compute the class group action 𝐸 ↦ 𝐸_𝔞 ≃ 𝐸/𝐸[𝔞].
Distributed Differential Privacy via Shuffling vs Aggregation: a Curious Study
Yu Wei, Jingyu Jia, Yuduo Wu, Changhui Hu, Changyu Dong, Zheli Liu, Xiaofeng Chen, Yun Peng, Shaowei Wang
Applications
How to achieve distributed differential privacy (DP) without a trusted central party is of great interest in both theory and practice. Recently, the shuffle model has attracted much attention. Unlike the local DP model in which the users send randomized data directly to the data collector/analyzer, in the shuffle model an intermediate untrusted shuffler is introduced to randomly permute the data, which have already been randomized by the users, before they reach the analyzer. The most...
Adaptively Secure Consensus with Linear Complexity and Constant Round under Honest Majority in the Bare PKI Model, and Separation Bounds from the Idealized Message-Authentication Model
Matthieu Rambaud
Foundations
We consider the mainstream model in secure computation known as the bare PKI setup, also as the {bulletin-board PKI}. It allows players to broadcast once and non-interactively before they receive their inputs and start the execution. A bulletin-board PKI is essentially the minimum setup known so far to implement the model known as {messages-authentication}, i.e., when $P$ is forwarded a signed message, it considers it to be issued by $R$ if and only if $R$ signed it. It is known since...
Exploiting the Symmetry of $\mathbb{Z}^n$: Randomization and the Automorphism Problem
Kaijie Jiang, Anyu Wang, Hengyi Luo, Guoxiao Liu, Yang Yu, Xiaoyun Wang
Foundations
$\mathbb{Z}^n$ is one of the simplest types of lattices, but the computational problems on its rotations, such as $\mathbb{Z}$SVP and $\mathbb{Z}$LIP, have been of great interest in cryptography. Recent advances have been made in building cryptographic primitives based on these problems, as well as in developing new algorithms for solving them. However, the theoretical complexity of $\mathbb{Z}$SVP and $\mathbb{Z}$LIP are still not well understood.
In this work, we study the problems on...
Advisor-Verifier-Prover Games and the Hardness of Information Theoretic Cryptography
Benny Applebaum, Oded Nir
Cryptographic protocols
A major open problem in information-theoretic cryptography is to obtain a super-polynomial lower bound for the communication complexity of basic cryptographic tasks. This question is wide open even for very powerful non-interactive primitives such as private information retrieval (or locally-decodable codes), general secret sharing schemes, conditional disclosure of secrets, and fully-decomposable randomized encoding (or garbling schemes). In fact, for all these primitives we do not even...
Convex Consensus with Asynchronous Fallback
Andrei Constantinescu, Diana Ghinea, Roger Wattenhofer, Floris Westermann
Cryptographic protocols
Convex Consensus (CC) allows a set of parties to agree on a value $v$ inside the convex hull of their inputs with respect to a predefined abstract convexity notion, even in the presence of byzantine parties. In this work, we focus on achieving CC in the best-of-both-worlds paradigm, i.e., simultaneously tolerating at most $t_s$ corruptions if communication is synchronous, and at most $t_a \leq t_s$ corruptions if it is asynchronous. Our protocol is randomized, which is a requirement under...
Amortized NISC over $\mathbb{Z}_{2^k}$ from RMFE
Fuchun Lin, Chaoping Xing, Yizhou Yao, Chen Yuan
Cryptographic protocols
Reversed multiplication friendly embedding (RMFE) amortization has been playing an active role in the state-of-the-art constructions of MPC protocols over rings (in particular, the ring $\mathbb{Z}_{2^k}$). As far as we know, this powerful technique has NOT been able to find applications in the crown jewel of two-party computation, the non-interactive secure computation (NISC), where the requirement of the protocol being non-interactive constitutes a formidable technical bottle-neck. We...
Communication Lower Bounds for Cryptographic Broadcast Protocols
Erica Blum, Elette Boyle, Ran Cohen, Chen-Da Liu-Zhang
Cryptographic protocols
Broadcast protocols enable a set of $n$ parties to agree on the input of a designated sender, even facing attacks by malicious parties. In the honest-majority setting, a fruitful line of work harnessed randomization and cryptography to achieve low-communication broadcast protocols with sub-quadratic total communication and with "balanced" sub-linear communication cost per party.
However, comparatively little is known in the dishonest-majority setting. Here, the most...
On the Invalidity of LV16/Lin17 Obfuscation Schemes Revisited
Yupu Hu, Siyue Dong, Baocang Wang, Xingting Dong
Attacks and cryptanalysis
LV16/Lin17 IO schemes are famous progresses towards simplifying obfuscation mechanism. In fact, these two schemes only constructed two compact functional encryption (CFE) algorithms, while other things were taken to the AJ15 IO frame or BV15 IO frame. CFE algorithms are inserted into the AJ15 IO frame or BV15 IO frame to form a complete IO scheme. We stated the invalidity of LV16/Lin17 IO schemes. More detailedly, under reasonable assumption “real white box (RWB)” LV16/Lin17 CFE algorithms...
Mask Compression: High-Order Masking on Memory-Constrained Devices
Markku-Juhani O. Saarinen, Mélissa Rossi
Implementation
Masking is a well-studied method for achieving provable security against side-channel attacks. In masking, each sensitive variable is split into $d$ randomized shares, and computations are performed with those shares. In addition to the computational overhead of masked arithmetic, masking also has a storage cost, increasing the requirements for working memory and secret key storage proportionally with $d$.
In this work, we introduce mask compression. This conceptually simple technique is...
From MLWE to RLWE: A Differential Fault Attack on Randomized & Deterministic Dilithium
Mohamed ElGhamrawy, Melissa Azouaoui, Olivier Bronchain, Joost Renes, Tobias Schneider, Markus Schönauer, Okan Seker, Christine van Vredendaal
Attacks and cryptanalysis
The post-quantum digital signature scheme CRYSTALS-Dilithium has been recently selected by the NIST for standardization. Implementing CRYSTALS-Dilithium, and other post-quantum cryptography schemes, on embedded devices raises a new set of challenges, including ones related to performance in terms of speed and memory requirements, but also related to side-channel and fault injection attacks security. In this work, we investigated the latter and describe a differential fault attack on the...
BlindPerm: Efficient MEV Mitigation with an Encrypted Mempool and Permutation
Alireza Kavousi, Duc V. Le, Philipp Jovanovic, George Danezis
Cryptographic protocols
To mitigate the negative effects of the maximal extractable value (MEV), we propose techniques that utilize randomized permutation to shuffle the order of transactions in a committed block before execution. We argue that existing approaches based on encrypted mempools cannot provide sufficient mitigation, particularly against block producer, and can be extended by permutation-based techniques to provide multi-layer protection. With a focus on PoS committee-based consensus we then introduce...
Arithmetic Sketching
Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, Yuval Ishai
Cryptographic protocols
This paper introduces arithmetic sketching, an abstraction of a primitive that several previous works use to achieve lightweight, low-communication zero-knowledge verification of secret-shared vectors. An arithmetic sketching scheme for a language $\mathcal{L} \in \mathbb{F}^n$ consists of (1) a randomized linear function compressing a long input x to a short “sketch,” and (2) a small arithmetic circuit that accepts the sketch if and only if $x \in \mathcal{L}$, up to some small error. If...
Correlated-Output Differential Privacy and Applications to Dark Pools
James Hsin-yu Chiang, Bernardo David, Mariana Gama, Christian Janos Lebeda
Cryptographic protocols
In the classical setting of differential privacy, a privacy-preserving query is performed on a private database, after which the query result is released to the analyst; a differentially private query ensures that the presence of a single database entry is protected from the analyst’s view. In this work, we contribute the first definitional framework for differential privacy in the trusted curator setting; clients submit private inputs to the trusted curator, which then computes individual...
Additive Randomized Encodings and Their Applications
Shai Halevi, Yuval Ishai, Eyal Kushilevitz, Tal Rabin
Foundations
Addition of $n$ inputs is often the easiest nontrivial function to compute securely. Motivated by several open questions, we ask what can be computed securely given only an oracle that computes the sum. Namely, what functions can be computed in a model where parties can only encode their input locally, then sum up the encodings over some Abelian group $\G$, and decode the result to get the function output.
An *additive randomized encoding* (ARE) of a function $f(x_1,\ldots,x_n)$ maps...
Private Proof-of-Stake Blockchains using Differentially-private Stake Distortion
Chenghong Wang, David Pujo, Kartik Nayak, Ashwin Machanavajjhala
Cryptographic protocols
Safety, liveness, and privacy are three critical properties for any private proof-of-stake (PoS) blockchain. However, prior work (SP'21) has shown that to obtain safety and liveness, a PoS blockchain must in theory forgo privacy. Specifically, to ensure safety and liveness, PoS blockchains elect parties based on stake proportion, potentially exposing a party's stake even with private transaction processing. In this work, we make two key contributions. First, we present the first stake...
On the Invalidity of LV16/Lin17 Obfuscation Schemes
Yupu Hu, Siyue Dong, Baocang Wang, Xingting Dong
Attacks and cryptanalysis
Indistinguishability obfuscation (IO) is at the frontier of cryptography research for several years. LV16/Lin17 obfuscation schemes are famous progresses towards simplifying obfuscation mechanism. In fact, these two schemes only constructed two compact functional encryption (CFE) algorithms, while other things were taken to AJ15 IO frame or BV15 IO frame. That is, CFE algorithms are inserted into AJ15 IO frame or BV15 IO frame to form a complete IO scheme. The basic structure of two CFE...
ScionFL: Efficient and Robust Secure Quantized Aggregation
Yaniv Ben-Itzhak, Helen Möllering, Benny Pinkas, Thomas Schneider, Ajith Suresh, Oleksandr Tkachenko, Shay Vargaftik, Christian Weinert, Hossein Yalame, Avishay Yanai
Cryptographic protocols
Secure aggregation is commonly used in federated learning (FL) to alleviate privacy concerns related to the central aggregator seeing all parameter updates in the clear. Unfortunately, most existing secure aggregation schemes ignore two critical orthogonal research directions that aim to (i) significantly reduce client-server communication and (ii) mitigate the impact of malicious clients. However, both of these additional properties are essential to facilitate cross-device FL with thousands...
2023/574
Last updated: 2024-02-14
A Randomized Bit Generator using Algebraic Number Theory
Ajay Dabral
Cryptographic protocols
There are lots of Random Key Generators, In this paper, we gave a new construction of Randomized Bit Generator by using Algebraic number theory, which is quite easy to compute and also we keep the security of this generator in our mind. we discussed its applications as a secret key generator being a randomized bit generator in encryption schemes and hash functions. We tried to make it Quantumly secure by randomizing it and extending its parameters to see it as a Quantum Random key generator.
Secure Computation with Shared EPR Pairs (Or: How to Teleport in Zero-Knowledge)
James Bartusek, Dakshita Khurana, Akshayaram Srinivasan
Cryptographic protocols
Can a sender non-interactively transmit one of two strings to a receiver without knowing which string was received? Does there exist minimally-interactive secure multiparty computation that only makes (black-box) use of symmetric-key primitives? We provide affirmative answers to these questions in a model where parties have access to shared EPR pairs, thus demonstrating the cryptographic power of this resource.
First, we construct a one-shot (i.e., single message) string oblivious...
Practical Randomized Lattice Gadget Decomposition With Application to FHE
Sohyun Jeon, Hyang-Sook Lee, Jeongeun Park
Foundations
Gadget decomposition is widely used in lattice based cryptography, especially homomorphic encryption (HE) to keep the noise growth slow. If it is randomized following a subgaussian distribution, it is called subgaussian (gadget) decomposition which guarantees that we can bound the noise contained in ciphertexts by its variance. This gives tighter and cleaner noise bound in average case, instead of the use of its norm. Even though there are few attempts to build efficient such algorithms,...
Subset-optimized BLS Multi-signature with Key Aggregation
Foteini Baldimtsi, Konstantinos Kryptos Chalkias, Francois Garillot, Jonas Lindstrom, Ben Riva, Arnab Roy, Mahdi Sedaghat, Alberto Sonnino, Pun Waiwitlikhit, Joy Wang
Public-key cryptography
We propose a variant of the original Boneh, Drijvers, and Neven (Asiacrypt '18) BLS multi-signature aggregation scheme best suited to applications where the full set of potential signers is fixed and known and any subset $I$ of this group can create a multi-signature over a message $m$. This setup is very common in proof-of-stake blockchains where a $2f+1$ majority of $3f$ validators sign transactions and/or blocks and is secure against $\textit{rogue-key}$ attacks without requiring a proof...
Security Analysis of Signature Schemes with Key Blinding
Edward Eaton, Tancrède Lepoint, Christopher A. Wood
Cryptographic protocols
Digital signatures are fundamental components of public key cryptography. They allow a signer to generate verifiable and unforgeable proofs---signatures---over arbitrary messages with a private key, and allow recipients to verify the proofs against the corresponding and expected public key. These properties are used in practice for a variety of use cases, ranging from identity or data authenticity to non-repudiation. Unsurprisingly, signature schemes are widely used in security protocols...
Randomized Half-Ideal Cipher on Groups with applications to UC (a)PAKE
Bruno Freitas Dos Santos, Yanqi Gu, Stanislaw Jarecki
Cryptographic protocols
An Ideal Cipher (IC) is a cipher where each key defines a random permutation on the domain. Ideal Cipher on a group has many attractive applications, e.g., the Encrypted Key Exchange (EKE) protocol for Password Authenticated Key Exchange (PAKE) [10], or
asymmetric PAKE (aPAKE) [40, 36]. However, known constructions for IC on a group domain all have drawbacks, including key leakage from timing information [15], requiring 4 hash-onto-group operations if IC is an 8-round Feistel [27], and...
Faithful Simulation of Randomized BFT Protocols on Block DAGs
Hagit Attiya, Constantin Enea, Shafik Nassar
Applications
Byzantine Fault-Tolerant (BFT) protocols that are based on Directed Acyclic Graphs (DAGs) are attractive due to their many advantages in asynchronous blockchain systems. These DAG-based protocols can be viewed as a simulation of some BFT protocol on a DAG. Many DAG-based BFT protocols rely on randomization, since they are used for agreement and ordering of transactions, which cannot be achieved deterministically in asynchronous systems. Randomization is achieved either through local sources...
VORSHA: A Variable-sized, One-way and Randomized Secure Hash Algorithm
Ripon Patgiri, Laiphrakpam Dolendro Singh, Dalton Meitei Thounaojam
Foundations
In this paper, we propose a variable-sized, one-way, and randomized secure hash algorithm, VORSHA for short. We present six variants of VORSHA, which are able to generate a randomized secure hash value. VORSHA is the first secure hash algorithm to randomize the secure hash value fully. The key embodiment of our proposed algorithm is to generate a pool of pseudo-random bits using the primary hash functions and selects a few bits from the pool of bits to form the final randomized secure hash...
The Security of ChaCha20-Poly1305 in the Multi-user Setting
Jean Paul Degabriele, Jérôme Govinden, Felix Günther, Kenneth G. Paterson
Secret-key cryptography
The ChaCha20-Poly1305 AEAD scheme is being increasingly widely deployed in practice. Practitioners need proven security bounds in order to set data limits and rekeying intervals for the scheme. But the formal security analysis of ChaCha20-Poly1305 currently lags behind that of AES-GCM. The only extant analysis (Procter, 2014) contains a flaw and is only for the single-user setting. We rectify this situation. We prove a multi-user security bound on the AEAD security of ChaCha20-Poly1305 and...
Random Sources in Private Computation
Geoffroy Couteau, Adi Rosén
Cryptographic protocols
We consider multi-party information-theoretic private computation. Such computation inherently requires the use of local randomness by the parties, and the question of minimizing the total number of random bits used for given private computations has received considerable attention in the literature.
In this work we are interested in another question: given a private computation, we ask how many of the players need to have access to a random source, and how many of them can be...
On Protecting SPHINCS+ Against Fault Attacks
Aymeric Genêt
Attacks and cryptanalysis
SPHINCS+ is a hash-based digital signature scheme that was selected by NIST in their post-quantum cryptography standardization process. The establishment of a universal forgery on the seminal scheme SPHINCS was shown to be feasible in practice by injecting a fault when the signing device constructs any non-top subtree. Ever since the attack has been made public, little effort was spent to protect the SPHINCS family against attacks by faults. This paper works in this direction in the context...
Ring Signatures with User-Controlled Linkability
Dario Fiore, Lydia Garms, Dimitris Kolonelos, Claudio Soriente, Ida Tucker
Public-key cryptography
Anonymous authentication primitives, e.g., group or ring signatures, allow one to realize privacy-preserving data collection applications, as they strike a balance between authenticity of data being collected and privacy of data providers. At PKC 2021, Diaz and Lehmann defined group signatures with User-Controlled Linkability (UCL) and provided an instantiation based on BBS+ signatures. In a nutshell, a signer of a UCL group signature scheme can link any of her signatures: linking evidence...
Enhancing Ring-LWE Hardness using Dedekind Index Theorem
Charanjit S Jutla, Chengyu Lin
Foundations
In this work we extend the known pseudorandomness of Ring-LWE (RLWE) to be based on ideal lattices of non Dedekind domains. In earlier works of Lyubashevsky et al (EUROCRYPT 2010) and Peikert et al (STOC 2017), the hardness of RLWE was based on ideal lattices of ring of integers of number fields, which are known to be Dedekind domains. While these works extended Regev's (STOC 2005) quantum polynomial-time reduction for LWE, thus allowing more efficient and more structured cryptosystems, the...
Oblivious-Transfer Complexity of Noisy Coin-Toss via Secure Zero Communication Reductions
Saumya Goyal, Varun Narayanan, Manoj Prabhakaran
Foundations
In p-noisy coin-tossing, Alice and Bob obtain fair coins which are of opposite values with probability p. Its Oblivious-Transfer (OT) complexity refers to the least number of OTs required by a semi-honest perfectly secure 2-party protocol for this task. We show a tight bound of Θ(log 1/p) for the OT complexity of p-noisy coin-tossing. This is the first instance of a lower bound for OT complexity that is independent of the input/output length of the function.
We obtain our result by...
Shielding Probabilistically Checkable Proofs: Zero-Knowledge PCPs from Leakage Resilience
Mor Weiss
Foundations
Probabilistically Checkable Proofs (PCPs) allow a randomized verifier, with oracle access to a purported proof, to probabilistically verify an input statement of the form ``$x\in\mathcal{L}$'' by querying only few proof bits. Zero-Knowledge PCPs (ZK-PCPs) enhance standard PCPs to additionally guarantee that the view of any (possibly malicious) verifier querying a bounded number of proof bits can be efficiently simulated up to a small statistical distance.
The first ZK-PCP construction of...
WrapQ: Side-Channel Secure Key Management for Post-Quantum Cryptography
Markku-Juhani O. Saarinen
Implementation
Transition to PQC brings complex challenges to builders of secure cryptographic hardware. PQC keys usually need to be stored off-module and protected via symmetric encryption and message authentication codes. Only a short, symmetric Key-Encrypting Key (KEK) can be managed on-chip with trusted non-volatile key storage. For secure use, PQC key material is handled in masked format; as randomized shares. Due to the masked encoding of the key material, algorithm-specific techniques are needed to...
Circuit Privacy for FHEW/TFHE-Style Fully Homomorphic Encryption in Practice
Kamil Kluczniak
Public-key cryptography
A fully homomorphic encryption (FHE) scheme allows a client to encrypt and delegate its data to a server that performs computation on the encrypted data that the client can then decrypt. While FHE gives confidentiality to clients' data, it does not protect the server's input and computation. Nevertheless, FHE schemes are still helpful in building delegation protocols that reduce communication complexity, as the ciphertext's size is independent of the size of the computation performed on...
Side-Channel Attack Countermeasures Based On Clock Randomization Have a Fundamental Flaw
Martin Brisfors, Michail Moraitis, Elena Dubrova
Implementation
Clock randomization is one of the oldest countermeasures against side-channel attacks. Various implementations have been presented in the past, along with positive security evaluations. However, in this paper we show that it is possible to break countermeasures based on a randomized clock by sampling side-channel measurements at a frequency much higher than the encryption clock, synchronizing the traces with pre-processing, and targeting the beginning of the encryption.
We demonstrate a...
New Time-Memory Trade-Offs for Subset Sum -- Improving ISD in Theory and Practice
Andre Esser, Floyd Zweydinger
Attacks and cryptanalysis
We propose new time-memory trade-offs for the random subset sum problem defined on $(a_1,\ldots,a_n,t)$ over $\mathbb{Z}_{2^n}$.
Our trade-offs yield significant running time improvements for every fixed memory limit $M\geq2^{0.091n}$. Furthermore, we interpolate to the running times of the fastest known algorithms when memory is not limited.
Technically, our design introduces a pruning strategy to the construction by Becker-Coron-Joux (BCJ) that allows for an exponentially small...
2022/1301
Last updated: 2022-10-19
On the Invalidity of Lin16/Lin17 Obfuscation Schemes
Hu Yupu, Dong Siyue, Wang Baocang, Dong Xingting
Attacks and cryptanalysis
Indistinguishability obfuscation (IO) is at the frontier of cryptography research. Lin16/Lin17 obfuscation schemes are famous progresses towards simplifying obfuscation mechanism. Their basic structure can be described in the following way: to obfuscate a polynomial-time-computable Boolean function $c(x)$, first divide it into a group of component functions with low-degree and low-locality by using randomized encoding, and then hide the shapes of these component functions by using...
PPAD is as Hard as LWE and Iterated Squaring
Nir Bitansky, Arka Rai Choudhuri, Justin Holmgren, Chethan Kamath, Alex Lombardi, Omer Paneth, Ron D. Rothblum
Foundations
One of the most fundamental results in game theory is that every finite strategic game has a Nash equilibrium, an assignment of (randomized) strategies to players with the stability property that no individual player can benefit from deviating from the assigned strategy. It is not known how to efficiently compute such a Nash equilibrium --- the computational complexity of this task is characterized by the class PPAD, but the relation of PPAD to other problems and well-known complexity...
SCARF: A Low-Latency Block Cipher for Secure Cache-Randomization
Federico Canale, Tim Güneysu, Gregor Leander, Jan Philipp Thoma, Yosuke Todo, Rei Ueno
Randomized cache architectures have proven to significantly
increase the complexity of contention-based cache side channel attacks
and therefore pre\-sent an important building block for side channel secure
microarchitectures. By
randomizing the address-to-cache-index mapping, attackers can
no longer trivially construct minimal eviction sets which are
fundamental for contention-based cache attacks. At the same time,
randomized caches maintain the flexibility of traditional...
zkQMC: Zero-Knowledge Proofs For (Some) Probabilistic Computations Using Quasi-Randomness
Zachary DeStefano, Dani Barrack, Michael Dixon
Applications
We initiate research into efficiently embedding probabilistic computations in probabilistic proofs by introducing techniques for capturing Monte Carlo methods and Las Vegas algorithms in zero knowledge and exploring several potential applications of these techniques. We design and demonstrate a technique for proving the integrity of certain randomized computations, such as uncertainty quantification methods, in non-interactive zero knowledge (NIZK) by replacing conventional randomness with...
Statistical Decoding 2.0: Reducing Decoding to LPN
Kevin Carrier, Thomas Debris-Alazard, Charles Meyer-Hilfiger, Jean-Pierre Tillich
Attacks and cryptanalysis
The security of code-based cryptography relies primarily on the hardness of generic decoding with linear codes. The best generic decoding algorithms are all improvements of an old algorithm due to Prange: they are known under the name of information set decoders (ISD).
A while ago, a generic decoding algorithm which does not belong to this family was proposed: statistical decoding.
It is a randomized algorithm that requires the computation of a large set of parity-checks of moderate...
Searchable Encryption with randomized ciphertext and randomized keyword search
Marco Calderini, Riccardo Longo, Massimiliano Sala, Irene Villa
Cryptographic protocols
The notion of public key encryption with keyword search (PEKS) was introduced to efficiently search over encrypted data. In this paper, we propose a PEKS scheme in which both the encrypted keyword and the trapdoor are randomized, so that the cloud server is not able to recognize identical queries. Our scheme is CI-secure in the single-user setting and TI-secure in the multi-user setting with multi-trapdoor.
\(\texttt{POLKA}\): Towards Leakage-Resistant Post-Quantum CCA-Secure Public Key Encryption
Clément Hoffmann, Benoît Libert, Charles Momin, Thomas Peters, François-Xavier Standaert
Public-key cryptography
As for any cryptographic algorithm, the deployment of post-quantum CCA-secure public-key encryption schemes may come with the need to be protected against side-channel attacks. For existing post-quantum schemes that have not been developed with leakage in mind, recent results showed that the cost of these protections can make their implementations more expensive by orders of magnitude. In this paper, we describe a new design, coined \(\texttt{POLKA}\), that is specifically tailored for this...
Nearly Optimal Property Preserving Hashing
Justin Holmgren, Minghao Liu, LaKyah Tyner, Daniel Wichs
Foundations
Property-preserving hashing (PPH) consists of a family of compressing hash functions $h$ such that, for any two inputs $x,y$, we can correctly identify whether some property $P(x,y)$ holds given only the digests $h(x),h(y)$. In a basic PPH, correctness should hold with overwhelming probability over the choice of $h$ when $x,y$ are worst-case values chosen a-priori and independently of $h$. In an adversarially robust PPH (RPPH), correctness must hold even when $x,y$ are chosen adversarially...
Quadratic Multiparty Randomized Encodings Beyond Honest Majority and Their Applications
Benny Applebaum, Yuval Ishai, Or Karni, Arpita Patra
Foundations
Multiparty randomized encodings (Applebaum, Brakerski, and Tsabary, SICOMP 2021) reduce the task of securely computing a complicated multiparty functionality $f$ to the task of securely computing a simpler functionality $g$. The reduction is non-interactive and preserves information-theoretic security against a passive (semi-honest) adversary, also referred to as privacy. The special case of a degree-2 encoding $g$ (2MPRE) has recently found several applications to secure multiparty...
Secret key generation from Gaussian sources using lattice-based extractors
Laura Luzzi, Cong Ling, Matthieu R. Bloch
Foundations
We propose a lattice-based scheme for secret key generation from Gaussian sources in the presence of an eavesdropper, and show that it achieves the strong secret key capacity in the case of degraded source models, as well as the optimal secret key / public communication rate trade-off. The key ingredients of our scheme are a lattice extractor to extract the channel intrinsic randomness, based on the notion of flatness factor, together with a randomized lattice quantization technique to...
Block Cipher's Substitution Box Generation Based on Natural Randomness in Underwater Acoustics and Knight's Tour Chain
Muhammad Fahad Khan, Khalid Saleem, Tariq Shah, Mohmmad Mazyad Hazzazi, Ismail Bahkali, Piyush Kumar Shukla
Secret-key cryptography
The protection of confidential information is a global issue and block encryption algorithms are the most reliable option for securing data. The famous information theorist, Claude Shannon has given two desirable characteristics that should exist in a strong cipher which are substitution and permutation in their fundamental research on "Communication Theory of Secrecy Systems.” block ciphers strictly follow the substitution and permutation principle in an iterative manner to generate a...
The Cost of Statistical Security in Interactive Proofs for Repeated Squaring
Cody Freitag, Ilan Komargodski
Foundations
In recent years, the number of applications of the repeated squaring assumption has been growing rapidly.
The assumption states that, given a group element $x$, an integer $T$, and an RSA modulus $N$, it is hard to compute $x^{2^T} \mod N$---or even decide whether $y\stackrel{?}{=}x^{2^T} \mod N$---in parallel time less than the trivial approach of computing $T$ sequential squarings.
This rise has been driven by efficient interactive proofs for repeated squaring, opening the door to more...
Practical Delegatable Anonymous Credentials From Equivalence Class Signatures
Omid Mir, Daniel Slamanig, Balthazar Bauer, René Mayrhofer
Cryptographic protocols
Anonymous credentials systems (ACs) are a powerful cryptographic tool for privacy-preserving applications and provide strong user privacy guarantees for authentication and access control. ACs allow users to prove possession of attributes encoded in a credential without revealing any information beyond them. A delegatable AC (DAC) system is an enhanced AC system that allows the owners of credentials to delegate the obtained credential to other users. This allows to model hierarchies as...
On the Adaptive Security of the Threshold BLS Signature Scheme
Renas Bacho, Julian Loss
Foundations
Threshold signatures are a crucial tool for many distributed protocols. As shown by Cachin, Kursawe, and Shoup (PODC '00), schemes with unique signatures are of particular importance, as they allow to implement distributed coin flipping very efficiently and without any timing assumptions. This makes them an ideal building block for (inherently randomized) asynchronous consensus protocols. The threshold BLS signature of Boldyreva (PKC '03) is both unique and very compact, but unfortunately...
Security of Truncated Permutation Without Initial Value
Lorenzo Grassi, Bart Mennink
Secret-key cryptography
Indifferentiability is a powerful notion in cryptography. If a construction is proven to be indifferentiable from an ideal object, it can under certain assumptions instantiate that ideal object in higher-level constructions. Indifferentiability is a particularly useful model for cryptographic hash functions, and myriad results are known proving that a hash function behaves like a random oracle under the assumption that the underlying primitive (typically a compression function, a block...
Single-trace clustering power analysis of the point-swapping procedure in the three point ladder of Cortex-M4 SIKE
Aymeric Genêt, Novak Kaluđerović
Public-key cryptography
In this paper, the recommended implementation of the post-quantum key exchange SIKE for Cortex-M4 is attacked through power analysis with a single trace by clustering with the $k$-means algorithm the power samples of all the invocations of the elliptic curve point swapping function in the constant-time coordinate-randomized three point ladder. Because each sample depends on whether two consecutive bits of the private key are the same or not, a successful clustering (with $k=2$) leads to the...
A More Complete Analysis of the Signal Double Ratchet Algorithm
Alexander Bienstock, Jaiden Fairoze, Sanjam Garg, Pratyay Mukherjee, Srinivasan Raghuraman
Cryptographic protocols
Seminal works by Cohn-Gordon, Cremers, Dowling, Garratt, and Stebila [EuroS&P 2017] and Alwen, Coretti and Dodis [EUROCRYPT 2019] provided the first formal frameworks for studying the widely-used Signal Double Ratchet (DR for short) algorithm.
In this work, we develop a new Universally Composable (UC) definition F_DR that we show is provably achieved by the DR protocol. Our definition captures not only the security and correctness guarantees of the DR already identified in the prior...
Round-Optimal Byzantine Agreement
Diana Ghinea, Vipul Goyal, Chen-Da Liu-Zhang
Cryptographic protocols
Byzantine agreement is a fundamental primitive in cryptography and distributed computing, and minimizing its round complexity is of paramount importance. It is long known that any randomized $r$-round protocol must fail with probability at least $(c\cdot r)^{-r}$, for some constant $c$, when the number of corruptions is linear in the number of parties, $t = \theta(n)$. On the other hand, current protocols fail with probability at least $2^{-r}$. Whether we can match the lower bound agreement...
Private Circuits with Quasilinear Randomness
Vipul Goyal, Yuval Ishai, Yifan Song
Foundations
A $t$-private circuit for a function $f$ is a randomized Boolean circuit $C$ that maps a randomized encoding of an input $x$ to an encoding of the output $f(x)$, such that probing $t$ wires anywhere in $C$ reveals nothing about $x$. Private circuits can be used to protect embedded devices against side-channel attacks. Motivated by the high cost of generating fresh randomness in such devices, several works have studied the question of minimizing the randomness complexity of private...
We present several new provable algorithms for two variants of the code equivalence problem on linear error-correcting codes, the Linear Code Equivalence Problem (LCE) and the Permutation Code Equivalence Problem (PCE). Specifically, for arbitrary codes of block length $n$ and dimension $k$ over any finite field $\mathbb{F}_q$, we show: 1) A deterministic algorithm running in $2^{n + o(n+q)}$ time for LCE. 2) A randomized algorithm running in $2^{n/2 + o(n+q)}$ time for LCE and PCE. 3) A...
We propose a quantum function secret sharing scheme in which the communication is exclusively classical. In this primitive, a classical dealer distributes a secret quantum circuit $C$ by providing shares to $p$ quantum parties. The parties on an input state $\ket{\psi}$ and a projection $\Pi$, compute values $y_i$ that they then classically communicate back to the dealer, who can then compute $\lVert\Pi C\ket{\psi}\rVert^2$ using only classical resources. Moreover, the shares do not leak...
We construct the first tightly secure signature schemes in the multi-user setting with adaptive corruptions from classical discrete logarithm, RSA, factoring, or post-quantum group action discrete logarithm assumption. In contrast to our scheme, the previous tightly secure schemes are based on the decisional assumption (e.g., (group action) DDH) or interactive search assumptions (e.g., one-more CDH). The security of our schemes is independent of the number of users, signing queries, and...
Introduced by Halevi, Ishai, Kushilevitz, and Rabin (CRYPTO 2023), Additive randomized encodings (ARE) reduce the computation of a $k$-party function $f(x_1,\dots,x_k)$ to locally computing encodings $\hat x_i$ of each input $x_i$ and then adding them together over some Abelian group into an output encoding $\hat y = \sum \hat x_i$, which reveals nothing but the result. The appeal of ARE comes from the simplicity of the non-local computation, involving only addition. This gives rise for...
Time-lock puzzles (TLP) are a cryptographic tool that allow one to encrypt a message into the future, for a predetermined amount of time $T$. At present, we have only two constructions with provable security: One based on the repeated squaring assumption and the other based on obfuscation. Basing TLP on any other assumption is a long-standing question, further motivated by the fact that known constructions are broken by quantum algorithms. In this work, we propose a new approach to...
A secret-sharing scheme allows the distribution of a secret $s$ among $n$ parties, such that only certain predefined “authorized” sets of parties can reconstruct the secret, while all other “unauthorized” sets learn nothing about $s$. The collection of authorized/unauthorized sets is defined by a monotone function $f: \{0,1\}^n \rightarrow \{0,1\}$. It is known that any monotone function can be realized by a secret-sharing scheme; thus, the smallest achievable \emph{total share size},...
Multi-input functional encryption is a primitive that allows for the evaluation of an $\ell$-ary function over multiple ciphertexts, without learning any information about the underlying plaintexts. This type of computation is useful in many cases where one has to compute over encrypted data, such as privacy-preserving cloud services, federated learning, or more generally delegation of computation from multiple clients. It has recently been shown by Alborch et al. in PETS '24 to be useful to...
Local Differential Privacy (LDP) mechanisms consist of (locally) adding controlled noise to data in order to protect the privacy of their owner. In this paper, we introduce a new cryptographic primitive called LDP commitment. Usually, a commitment ensures that the committed value cannot be modified before it is revealed. In the case of an LDP commitment, however, the value is revealed after being perturbed by an LDP mechanism. Opening an LDP commitment therefore requires a proof that the...
Pseudorandom codes are error-correcting codes with the property that no efficient adversary can distinguish encodings from uniformly random strings. They were recently introduced by Christ and Gunn [CRYPTO 2024] for the purpose of watermarking the outputs of randomized algorithms, such as generative AI models. Several constructions of pseudorandom codes have since been proposed, but none of them are robust to error channels that depend on previously seen codewords. This stronger kind of...
Succinct randomized encodings allow encoding the input $x$ of a time-$t$ uniform computation $M(x)$ in sub-linear time $o(t)$. The resulting encoding $\tilde{x}$ allows recovering the result of the computation $M(x)$, but hides any other information about $x$. These encodings have powerful applications, including time-lock puzzles, reducing communication in MPC, and bootstrapping advanced encryption schemes. Until not long ago, the only known constructions were based on...
The meteoric rise in power and popularity of machine learning models dependent on valuable training data has reignited a basic tension between the power of running a program locally and the risk of exposing details of that program to the user. At the same time, fundamental properties of quantum states offer new solutions to data and program security that can require strikingly few quantum resources to exploit, and offer advantages outside of mere computational run time. In this work, we...
In this paper, we investigate whether the privacy mechanism of periodically changing the pseudorandom identities of Bluetooth Low Energy (BLE) beacons is sufficient to ensure privacy. We consider a new natural privacy notion for BLE broadcasting beacons which we call ``Timed-sequence- indistinguishability'' of beacons. This new privacy definition is stronger than the well-known indistinguishability, since it considers not just the advertisements' content, but also the advertisements'...
We introduce the notion of pseudorandom obfuscation (PRO), a way to obfuscate (keyed) pseudorandom functions $f_K$ in an average-case sense. We introduce several variants of pseudorandom obfuscation and show constructions and applications. For some of our applications that can be achieved using full-fledged indistinguishability obfuscation (iO), we show constructions using lattice-based assumptions alone; the other applications we enable using PRO are simply not known even assuming iO. We...
Reductions are the workhorses of cryptography. They allow constructions of complex cryptographic primitives from simple building blocks. A prominent example is the non-interactive reduction from securely computing a ``complex" function $f$ to securely computing a ``simple" function $g$ via randomized encodings. Prior work equated simplicity with functions of small degree. In this work, we consider a different notion of simplicity where we require $g$ to only take inputs from a small...
In this work, we introduce a more efficient post-quantum oblivious PRF (OPRF) design, called LeOPaRd. Our proposal is round-optimal and supports verifiability and partial obliviousness, all of which are important for practical applications. The main technical novelty of our work is a new method for computing samples of MLWE (module learning with errors) in a two-party setting. To do this, we introduce a new family of interactive lattice problems, called interactive MLWE and rounding with...
We introduce NeutronNova, a new folding scheme for the zero-check relation: an instance-witness pair is in the zero-check relation if a corresponding multivariate polynomial evaluates to zero for all inputs over a suitable Boolean hypercube. The folding scheme is a two-round protocol, and it internally invokes a \emph{single} round of the sum-check protocol. The folding scheme is more efficient than prior state-of-the-art schemes and directly benefits from recent improvements to the...
It is well known that a trusted setup allows one to solve the Byzantine agreement problem in the presence of $t<n/2$ corruptions, bypassing the setup-free $t<n/3$ barrier. Alas, the overwhelming majority of protocols in the literature have the caveat that their security crucially hinges on the security of the cryptography and setup, to the point where if the cryptography is broken, even a single corrupted party can violate the security of the protocol. Thus these protocols provide higher...
We study error detection and error correction in a computationally bounded world, where errors are introduced by an arbitrary polynomial time adversarial channel. We consider codes where the encoding procedure uses random coins and define two distinct variants: (1) in randomized codes, fresh randomness is chosen during each encoding operation and is unknown a priori, while (2) in self-seeded codes, the randomness of the encoding procedure is fixed once upfront and is known to the adversary....
Cryptography is a crucial method for ensuring the security of communication and data transfers across networks. While it excels on devices with abundant resources, such as PCs, servers, and smartphones, it may encounter challenges when applied to resource-constrained Internet of Things (IoT) devices like Radio Frequency Identification (RFID) tags and sensors. To address this issue, a demand arises for a lightweight variant of cryptography known as lightweight cryptography (LWC). In...
Many of the currently best actively secure Multi-Party Computation (MPC) protocols like SPDZ (Damgård et al., CRYPTO 2012) and improvements thereof use correlated randomness to speed up the time-critical online phase. Although many of these protocols still rely on classical Beaver triples, recent results show that more complex correlations like matrix or convolution triples lead to more efficient evaluations of the corresponding operations, i.e. matrix multiplications or tensor convolutions....
Always Encrypted (AE) is a Microsoft SQL Server feature that allows clients to encrypt sensitive data inside client applications and ensures that the sensitive data is hidden from untrusted servers and database administrators. AE offers two column-encryption options: deterministic encryption (DET) and randomized encryption (RND). In this paper, we explore the security implications of using AE with both DET and RND encryption modes by running Leakage Abuse Attacks (LAAs) against the system....
Private Set Intersection (PSI) enables a sender and a receiver to jointly compute the intersection of their sets without disclosing non-trivial information about other items. However, depending on the context of joint data analysis, information derived from the items in the intersection may also be considered sensitive. To protect such sensitive information, prior work proposed Differentially private PSI (DPSI), which can be instantiated with circuit-PSI using Fully Homomorphic Encryption....
At Eurocrypt'24, Mureau et al. formally defined the Lattice Isomorphism Problem for module lattices (module-LIP) in a number field $\mathbb{K}$, and proposed a heuristic randomized algorithm solving module-LIP for modules of rank 2 in $\mathbb{K}^2$ with a totally real number field $\mathbb{K}$, which runs in classical polynomial time for a large class of modules and a large class of totally real number field under some reasonable number theoretic assumptions. In this paper, by introducing a...
Randomized distributed function computation refers to remote function computation where transmitters send data to receivers which compute function outputs that are randomized functions of the inputs. We study the applications of semantic communications in randomized distributed function computation to illustrate significant reductions in the communication load, with a particular focus on privacy. The semantic communication framework leverages generalized remote source coding methods, where...
Masking is a widely adopted countermeasure against side-channel analysis (SCA) that protects cryptographic implementations from information leakage. However, current masking schemes often incur significant overhead in terms of electronic cost. RAMBAM, a recently proposed masking technique that fits elegantly with the AES algorithm, offers ultra-low latency/area by utilizing redundant representations of finite field elements. This paper presents a comprehensive generalization of RAMBAM and...
In the useful and well studied model of secret-sharing schemes, there are $n$ parties and a dealer, which holds a secret. The dealer applies some randomized algorithm to the secret, resulting in $n$ strings, called shares; it gives the $i$'th share to the $i$'th party. There are two requirements. (1) correctness: some predefined subsets of the parties can jointly reconstruct the secret from their shares, and (2) security: any other set gets no information on the secret. The collection of...
In this paper, we present two early stopping Byzantine agreement protocols in the authenticated setting against a corrupt minority $t < n/2$, where $t$ represents the maximum number of malicious parties. Early stopping protocols ensure termination within a number of rounds determined solely by the actual number of malicious nodes $f$ present during execution, irrespective of $t$. Our first protocol is deterministic and ensures early stopping termination in $ (d+5) \cdot (\lfloor f/d...
In an Instance-Hiding Interactive Proof (IHIP) [Beaver et al. CRYPTO 90], an efficient verifier with a _private_ input x interacts with an unbounded prover to determine whether x is contained in a language L. In addition to completeness and soundness, the instance-hiding property requires that the prover should not learn anything about x in the course of the interaction. Such proof systems capture natural privacy properties, and may be seen as a generalization of the influential concept of...
We present Whisper, a system for privacy-preserving collection of aggregate statistics. Like prior systems, a Whisper deployment consists of a small set of non-colluding servers; these servers compute aggregate statistics over data from a large number of users without learning the data of any individual user. Whisper’s main contribution is that its server- to-server communication cost and its server-side storage costs scale sublinearly with the total number of users. In particular, prior...
We present two techniques to improve the computational and/or communication costs of STARK proofs: packing and modular split-and-pack. Packing allows to generate a single proof of the satisfiability of several constraints. We achieve this by packing the evaluations of all relevant polynomials in the same Merkle leaves, and combining all DEEP FRI functions into a single randomized validity function. Our benchmarks show that packing reduces the verification time and proof size compared...
In this paper, we introduce the first fault attack on SQIsign. By injecting a fault into the ideal generator during the commitment phase, we demonstrate a meaningful probability of inducing the generation of order $\mathcal{O}_0$. The probability is bounded by one parameter, the degree of commitment isogeny. We also show that the probability can be reasonably estimated by assuming uniform randomness of a random variable, and provide empirical evidence supporting the validity of this...
Threshold Schnorr signatures are seeing increased adoption in practice, and offer practical defenses against single points of failure. However, one challenge with existing randomized threshold Schnorr signature schemes is that signers must carefully maintain secret state across signing rounds, while also ensuring that state is deleted after a signing session is completed. Failure to do so will result in a fatal key-recovery attack by re-use of nonces. While deterministic threshold...
We define a (small) augmentation to the FROST threshold signature scheme that additionally allows for re-randomizable public and secret keys. We build upon the notion of re-randomizable keys in the literature, but tailor this capability when the signing key is secret-shared among a set of mutually trusted parties. We do not make any changes to the plain FROST protocol, but instead define additional algorithms to allow for randomization of the threshold public key and participant’s individual...
We demonstrate that under believable cryptographic hardness assumptions, Gap versions of standard meta-complexity problems, such as the Minimum Circuit Size problem (MCSP) and the Minimum Time-Bounded Kolmogorov Complexity problem (MKTP) are not NP-complete w.r.t. Levin (i.e., witness-preserving many-to-one) reductions. In more detail: - Assuming the existence of indistinguishability obfuscation, and subexponentially-secure one-way functions, an appropriate Gap version of MCSP is not...
A leakage-resilient circuit for $f:\{0,1\}^n\to\{0,1\}^m$ is a randomized Boolean circuit $C$ mapping a randomized encoding of an input $x$ to an encoding of $y=f(x)$, such that applying any leakage function $L\in \cal L$ to the wires of $C$ reveals essentially nothing about $x$. A leakage-tolerant circuit achieves the stronger guarantee that even when $x$ and $y$ are not protected by any encoding, the output of $L$ can be simulated by applying some $L'\in \cal L$ to $x$ and $y$ alone....
Randomized Partial Checking (RPC} was proposed by Jakobsson, Juels, and Rivest and attracted attention as an efficient method of verifying the correctness of the mixing process in numerous applied scenarios. In fact, RPC is a building block for many electronic voting schemes, including Prêt à Voter, Civitas, Scantegrity II as well as voting-systems used in real-world elections (e.g., in Australia). Mixing is also used in anonymous transfers of cryptocurrencies. It turned out, however,...
Additive randomized encodings (ARE), introduced by Halevi, Ishai, Kushilevitz, and Rabin (CRYPTO 2023), reduce the computation of a k-party function $f (x_1, . . . , x_k )$ to locally computing encodings $\hat{x}_i$ of each input xi and then adding them together over some Abelian group into an output encoding $\hat{y} = ∑ \hat{x}_i$, which reveals nothing but the result. In robust ARE (RARE) the sum of any subset of $\hat{x}_i$, reveals only the residual function obtained by restricting the...
Users bid in a transaction fee mechanism (TFM) to get their transactions included and confirmed by a blockchain protocol. Roughgarden (EC'21) initiated the formal treatment of TFMs and proposed three requirements: user incentive compatibility (UIC), miner incentive compatibility (MIC), and a form of collusion-resilience called OCA-proofness. Ethereum's EIP-1559 mechanism satisfies all three properties simultaneously when there is no contention between transactions, but loses the UIC property...
Shared randomness in blockchain can expand its support for randomized applications and can also help strengthen its security. Many existing blockchains rely on external randomness beacons for shared randomness, but this approach reduces fault tolerance, increases latency, and complicates application development. An alternate approach is to let the blockchain validators generate fresh shared randomness themselves once for every block. We refer to such a design as the \emph{on-chain}...
After NIST’s selection of Dilithium as the primary future standard for quantum-secure digital signatures, increased efforts to understand its implementation security properties are required to enable widespread adoption on embedded devices. Concretely, there are still many open questions regarding the susceptibility of Dilithium to fault attacks. This is especially the case for Dilithium’s randomized (or hedged) signing mode, which, likely due to devastating implementation attacks on the...
Differential privacy is a fundamental concept for protecting individual privacy in databases while enabling data analysis. Conceptually, it is assumed that the adversary has no direct access to the database, and therefore, encryption is not necessary. However, with the emergence of cloud computing and the «on-cloud» storage of vast databases potentially contributed by multiple parties, it is becoming increasingly necessary to consider the possibility of the adversary having (at least...
This paper conducts a comprehensive benchmarking analysis of the performance of two innovative cryptographic schemes: Homomorphic Polynomial Public Key (HPPK)-Key Encapsulation Mechanism (KEM) and Digital Signature (DS), recently proposed by Kuang et al. These schemes represent a departure from traditional cryptographic paradigms, with HPPK leveraging the security of homomorphic symmetric encryption across two hidden rings without reliance on NP-hard problems. HPPK can be viewed as a...
In their seminal work, Ishai, Kushilevitz, Ostrovsky, and Sahai (STOC`07) presented the MPC-in-the-Head paradigm, which shows how to design Zero-Knowledge Proofs (ZKPs) from secure Multi-Party Computation (MPC) protocols. This paradigm has since then revolutionized and modularized the design of efficient ZKP systems, with far-reaching applications beyond ZKPs. However, to the best of our knowledge, all previous instantiations relied on fully-secure MPC protocols, and have not been able to...
Fully homomorphic encryption (FHE) is an advanced cryptography technique to allow computations (i.e., addition and multiplication) over encrypted data. After years of effort, the performance of FHE has been significantly improved and it has moved from theory to practice. The transciphering framework is another important technique in FHE to address the issue of ciphertext expansion and reduce the client-side computational overhead. To apply the transciphering framework to the CKKS FHE scheme,...
In this short note, we present a simplified (but slower) version Clapoti of Clapotis, whose full description will appear later. Let 𝐸/𝔽_𝑞 be an elliptic curve with an effective primitive orientation by a quadratic imaginary order 𝑅 ⊂ End(𝐸). Let 𝔞 be an invertible ideal in 𝑅. Clapoti is a randomized polynomial time algorithm in 𝑂 ((log Δ_𝑅 + log 𝑞)^𝑂(1) ) operations to compute the class group action 𝐸 ↦ 𝐸_𝔞 ≃ 𝐸/𝐸[𝔞].
How to achieve distributed differential privacy (DP) without a trusted central party is of great interest in both theory and practice. Recently, the shuffle model has attracted much attention. Unlike the local DP model in which the users send randomized data directly to the data collector/analyzer, in the shuffle model an intermediate untrusted shuffler is introduced to randomly permute the data, which have already been randomized by the users, before they reach the analyzer. The most...
We consider the mainstream model in secure computation known as the bare PKI setup, also as the {bulletin-board PKI}. It allows players to broadcast once and non-interactively before they receive their inputs and start the execution. A bulletin-board PKI is essentially the minimum setup known so far to implement the model known as {messages-authentication}, i.e., when $P$ is forwarded a signed message, it considers it to be issued by $R$ if and only if $R$ signed it. It is known since...
$\mathbb{Z}^n$ is one of the simplest types of lattices, but the computational problems on its rotations, such as $\mathbb{Z}$SVP and $\mathbb{Z}$LIP, have been of great interest in cryptography. Recent advances have been made in building cryptographic primitives based on these problems, as well as in developing new algorithms for solving them. However, the theoretical complexity of $\mathbb{Z}$SVP and $\mathbb{Z}$LIP are still not well understood. In this work, we study the problems on...
A major open problem in information-theoretic cryptography is to obtain a super-polynomial lower bound for the communication complexity of basic cryptographic tasks. This question is wide open even for very powerful non-interactive primitives such as private information retrieval (or locally-decodable codes), general secret sharing schemes, conditional disclosure of secrets, and fully-decomposable randomized encoding (or garbling schemes). In fact, for all these primitives we do not even...
Convex Consensus (CC) allows a set of parties to agree on a value $v$ inside the convex hull of their inputs with respect to a predefined abstract convexity notion, even in the presence of byzantine parties. In this work, we focus on achieving CC in the best-of-both-worlds paradigm, i.e., simultaneously tolerating at most $t_s$ corruptions if communication is synchronous, and at most $t_a \leq t_s$ corruptions if it is asynchronous. Our protocol is randomized, which is a requirement under...
Reversed multiplication friendly embedding (RMFE) amortization has been playing an active role in the state-of-the-art constructions of MPC protocols over rings (in particular, the ring $\mathbb{Z}_{2^k}$). As far as we know, this powerful technique has NOT been able to find applications in the crown jewel of two-party computation, the non-interactive secure computation (NISC), where the requirement of the protocol being non-interactive constitutes a formidable technical bottle-neck. We...
Broadcast protocols enable a set of $n$ parties to agree on the input of a designated sender, even facing attacks by malicious parties. In the honest-majority setting, a fruitful line of work harnessed randomization and cryptography to achieve low-communication broadcast protocols with sub-quadratic total communication and with "balanced" sub-linear communication cost per party. However, comparatively little is known in the dishonest-majority setting. Here, the most...
LV16/Lin17 IO schemes are famous progresses towards simplifying obfuscation mechanism. In fact, these two schemes only constructed two compact functional encryption (CFE) algorithms, while other things were taken to the AJ15 IO frame or BV15 IO frame. CFE algorithms are inserted into the AJ15 IO frame or BV15 IO frame to form a complete IO scheme. We stated the invalidity of LV16/Lin17 IO schemes. More detailedly, under reasonable assumption “real white box (RWB)” LV16/Lin17 CFE algorithms...
Masking is a well-studied method for achieving provable security against side-channel attacks. In masking, each sensitive variable is split into $d$ randomized shares, and computations are performed with those shares. In addition to the computational overhead of masked arithmetic, masking also has a storage cost, increasing the requirements for working memory and secret key storage proportionally with $d$. In this work, we introduce mask compression. This conceptually simple technique is...
The post-quantum digital signature scheme CRYSTALS-Dilithium has been recently selected by the NIST for standardization. Implementing CRYSTALS-Dilithium, and other post-quantum cryptography schemes, on embedded devices raises a new set of challenges, including ones related to performance in terms of speed and memory requirements, but also related to side-channel and fault injection attacks security. In this work, we investigated the latter and describe a differential fault attack on the...
To mitigate the negative effects of the maximal extractable value (MEV), we propose techniques that utilize randomized permutation to shuffle the order of transactions in a committed block before execution. We argue that existing approaches based on encrypted mempools cannot provide sufficient mitigation, particularly against block producer, and can be extended by permutation-based techniques to provide multi-layer protection. With a focus on PoS committee-based consensus we then introduce...
This paper introduces arithmetic sketching, an abstraction of a primitive that several previous works use to achieve lightweight, low-communication zero-knowledge verification of secret-shared vectors. An arithmetic sketching scheme for a language $\mathcal{L} \in \mathbb{F}^n$ consists of (1) a randomized linear function compressing a long input x to a short “sketch,” and (2) a small arithmetic circuit that accepts the sketch if and only if $x \in \mathcal{L}$, up to some small error. If...
In the classical setting of differential privacy, a privacy-preserving query is performed on a private database, after which the query result is released to the analyst; a differentially private query ensures that the presence of a single database entry is protected from the analyst’s view. In this work, we contribute the first definitional framework for differential privacy in the trusted curator setting; clients submit private inputs to the trusted curator, which then computes individual...
Addition of $n$ inputs is often the easiest nontrivial function to compute securely. Motivated by several open questions, we ask what can be computed securely given only an oracle that computes the sum. Namely, what functions can be computed in a model where parties can only encode their input locally, then sum up the encodings over some Abelian group $\G$, and decode the result to get the function output. An *additive randomized encoding* (ARE) of a function $f(x_1,\ldots,x_n)$ maps...
Safety, liveness, and privacy are three critical properties for any private proof-of-stake (PoS) blockchain. However, prior work (SP'21) has shown that to obtain safety and liveness, a PoS blockchain must in theory forgo privacy. Specifically, to ensure safety and liveness, PoS blockchains elect parties based on stake proportion, potentially exposing a party's stake even with private transaction processing. In this work, we make two key contributions. First, we present the first stake...
Indistinguishability obfuscation (IO) is at the frontier of cryptography research for several years. LV16/Lin17 obfuscation schemes are famous progresses towards simplifying obfuscation mechanism. In fact, these two schemes only constructed two compact functional encryption (CFE) algorithms, while other things were taken to AJ15 IO frame or BV15 IO frame. That is, CFE algorithms are inserted into AJ15 IO frame or BV15 IO frame to form a complete IO scheme. The basic structure of two CFE...
Secure aggregation is commonly used in federated learning (FL) to alleviate privacy concerns related to the central aggregator seeing all parameter updates in the clear. Unfortunately, most existing secure aggregation schemes ignore two critical orthogonal research directions that aim to (i) significantly reduce client-server communication and (ii) mitigate the impact of malicious clients. However, both of these additional properties are essential to facilitate cross-device FL with thousands...
There are lots of Random Key Generators, In this paper, we gave a new construction of Randomized Bit Generator by using Algebraic number theory, which is quite easy to compute and also we keep the security of this generator in our mind. we discussed its applications as a secret key generator being a randomized bit generator in encryption schemes and hash functions. We tried to make it Quantumly secure by randomizing it and extending its parameters to see it as a Quantum Random key generator.
Can a sender non-interactively transmit one of two strings to a receiver without knowing which string was received? Does there exist minimally-interactive secure multiparty computation that only makes (black-box) use of symmetric-key primitives? We provide affirmative answers to these questions in a model where parties have access to shared EPR pairs, thus demonstrating the cryptographic power of this resource. First, we construct a one-shot (i.e., single message) string oblivious...
Gadget decomposition is widely used in lattice based cryptography, especially homomorphic encryption (HE) to keep the noise growth slow. If it is randomized following a subgaussian distribution, it is called subgaussian (gadget) decomposition which guarantees that we can bound the noise contained in ciphertexts by its variance. This gives tighter and cleaner noise bound in average case, instead of the use of its norm. Even though there are few attempts to build efficient such algorithms,...
We propose a variant of the original Boneh, Drijvers, and Neven (Asiacrypt '18) BLS multi-signature aggregation scheme best suited to applications where the full set of potential signers is fixed and known and any subset $I$ of this group can create a multi-signature over a message $m$. This setup is very common in proof-of-stake blockchains where a $2f+1$ majority of $3f$ validators sign transactions and/or blocks and is secure against $\textit{rogue-key}$ attacks without requiring a proof...
Digital signatures are fundamental components of public key cryptography. They allow a signer to generate verifiable and unforgeable proofs---signatures---over arbitrary messages with a private key, and allow recipients to verify the proofs against the corresponding and expected public key. These properties are used in practice for a variety of use cases, ranging from identity or data authenticity to non-repudiation. Unsurprisingly, signature schemes are widely used in security protocols...
An Ideal Cipher (IC) is a cipher where each key defines a random permutation on the domain. Ideal Cipher on a group has many attractive applications, e.g., the Encrypted Key Exchange (EKE) protocol for Password Authenticated Key Exchange (PAKE) [10], or asymmetric PAKE (aPAKE) [40, 36]. However, known constructions for IC on a group domain all have drawbacks, including key leakage from timing information [15], requiring 4 hash-onto-group operations if IC is an 8-round Feistel [27], and...
Byzantine Fault-Tolerant (BFT) protocols that are based on Directed Acyclic Graphs (DAGs) are attractive due to their many advantages in asynchronous blockchain systems. These DAG-based protocols can be viewed as a simulation of some BFT protocol on a DAG. Many DAG-based BFT protocols rely on randomization, since they are used for agreement and ordering of transactions, which cannot be achieved deterministically in asynchronous systems. Randomization is achieved either through local sources...
In this paper, we propose a variable-sized, one-way, and randomized secure hash algorithm, VORSHA for short. We present six variants of VORSHA, which are able to generate a randomized secure hash value. VORSHA is the first secure hash algorithm to randomize the secure hash value fully. The key embodiment of our proposed algorithm is to generate a pool of pseudo-random bits using the primary hash functions and selects a few bits from the pool of bits to form the final randomized secure hash...
The ChaCha20-Poly1305 AEAD scheme is being increasingly widely deployed in practice. Practitioners need proven security bounds in order to set data limits and rekeying intervals for the scheme. But the formal security analysis of ChaCha20-Poly1305 currently lags behind that of AES-GCM. The only extant analysis (Procter, 2014) contains a flaw and is only for the single-user setting. We rectify this situation. We prove a multi-user security bound on the AEAD security of ChaCha20-Poly1305 and...
We consider multi-party information-theoretic private computation. Such computation inherently requires the use of local randomness by the parties, and the question of minimizing the total number of random bits used for given private computations has received considerable attention in the literature. In this work we are interested in another question: given a private computation, we ask how many of the players need to have access to a random source, and how many of them can be...
SPHINCS+ is a hash-based digital signature scheme that was selected by NIST in their post-quantum cryptography standardization process. The establishment of a universal forgery on the seminal scheme SPHINCS was shown to be feasible in practice by injecting a fault when the signing device constructs any non-top subtree. Ever since the attack has been made public, little effort was spent to protect the SPHINCS family against attacks by faults. This paper works in this direction in the context...
Anonymous authentication primitives, e.g., group or ring signatures, allow one to realize privacy-preserving data collection applications, as they strike a balance between authenticity of data being collected and privacy of data providers. At PKC 2021, Diaz and Lehmann defined group signatures with User-Controlled Linkability (UCL) and provided an instantiation based on BBS+ signatures. In a nutshell, a signer of a UCL group signature scheme can link any of her signatures: linking evidence...
In this work we extend the known pseudorandomness of Ring-LWE (RLWE) to be based on ideal lattices of non Dedekind domains. In earlier works of Lyubashevsky et al (EUROCRYPT 2010) and Peikert et al (STOC 2017), the hardness of RLWE was based on ideal lattices of ring of integers of number fields, which are known to be Dedekind domains. While these works extended Regev's (STOC 2005) quantum polynomial-time reduction for LWE, thus allowing more efficient and more structured cryptosystems, the...
In p-noisy coin-tossing, Alice and Bob obtain fair coins which are of opposite values with probability p. Its Oblivious-Transfer (OT) complexity refers to the least number of OTs required by a semi-honest perfectly secure 2-party protocol for this task. We show a tight bound of Θ(log 1/p) for the OT complexity of p-noisy coin-tossing. This is the first instance of a lower bound for OT complexity that is independent of the input/output length of the function. We obtain our result by...
Probabilistically Checkable Proofs (PCPs) allow a randomized verifier, with oracle access to a purported proof, to probabilistically verify an input statement of the form ``$x\in\mathcal{L}$'' by querying only few proof bits. Zero-Knowledge PCPs (ZK-PCPs) enhance standard PCPs to additionally guarantee that the view of any (possibly malicious) verifier querying a bounded number of proof bits can be efficiently simulated up to a small statistical distance. The first ZK-PCP construction of...
Transition to PQC brings complex challenges to builders of secure cryptographic hardware. PQC keys usually need to be stored off-module and protected via symmetric encryption and message authentication codes. Only a short, symmetric Key-Encrypting Key (KEK) can be managed on-chip with trusted non-volatile key storage. For secure use, PQC key material is handled in masked format; as randomized shares. Due to the masked encoding of the key material, algorithm-specific techniques are needed to...
A fully homomorphic encryption (FHE) scheme allows a client to encrypt and delegate its data to a server that performs computation on the encrypted data that the client can then decrypt. While FHE gives confidentiality to clients' data, it does not protect the server's input and computation. Nevertheless, FHE schemes are still helpful in building delegation protocols that reduce communication complexity, as the ciphertext's size is independent of the size of the computation performed on...
Clock randomization is one of the oldest countermeasures against side-channel attacks. Various implementations have been presented in the past, along with positive security evaluations. However, in this paper we show that it is possible to break countermeasures based on a randomized clock by sampling side-channel measurements at a frequency much higher than the encryption clock, synchronizing the traces with pre-processing, and targeting the beginning of the encryption. We demonstrate a...
We propose new time-memory trade-offs for the random subset sum problem defined on $(a_1,\ldots,a_n,t)$ over $\mathbb{Z}_{2^n}$. Our trade-offs yield significant running time improvements for every fixed memory limit $M\geq2^{0.091n}$. Furthermore, we interpolate to the running times of the fastest known algorithms when memory is not limited. Technically, our design introduces a pruning strategy to the construction by Becker-Coron-Joux (BCJ) that allows for an exponentially small...
Indistinguishability obfuscation (IO) is at the frontier of cryptography research. Lin16/Lin17 obfuscation schemes are famous progresses towards simplifying obfuscation mechanism. Their basic structure can be described in the following way: to obfuscate a polynomial-time-computable Boolean function $c(x)$, first divide it into a group of component functions with low-degree and low-locality by using randomized encoding, and then hide the shapes of these component functions by using...
One of the most fundamental results in game theory is that every finite strategic game has a Nash equilibrium, an assignment of (randomized) strategies to players with the stability property that no individual player can benefit from deviating from the assigned strategy. It is not known how to efficiently compute such a Nash equilibrium --- the computational complexity of this task is characterized by the class PPAD, but the relation of PPAD to other problems and well-known complexity...
Randomized cache architectures have proven to significantly increase the complexity of contention-based cache side channel attacks and therefore pre\-sent an important building block for side channel secure microarchitectures. By randomizing the address-to-cache-index mapping, attackers can no longer trivially construct minimal eviction sets which are fundamental for contention-based cache attacks. At the same time, randomized caches maintain the flexibility of traditional...
We initiate research into efficiently embedding probabilistic computations in probabilistic proofs by introducing techniques for capturing Monte Carlo methods and Las Vegas algorithms in zero knowledge and exploring several potential applications of these techniques. We design and demonstrate a technique for proving the integrity of certain randomized computations, such as uncertainty quantification methods, in non-interactive zero knowledge (NIZK) by replacing conventional randomness with...
The security of code-based cryptography relies primarily on the hardness of generic decoding with linear codes. The best generic decoding algorithms are all improvements of an old algorithm due to Prange: they are known under the name of information set decoders (ISD). A while ago, a generic decoding algorithm which does not belong to this family was proposed: statistical decoding. It is a randomized algorithm that requires the computation of a large set of parity-checks of moderate...
The notion of public key encryption with keyword search (PEKS) was introduced to efficiently search over encrypted data. In this paper, we propose a PEKS scheme in which both the encrypted keyword and the trapdoor are randomized, so that the cloud server is not able to recognize identical queries. Our scheme is CI-secure in the single-user setting and TI-secure in the multi-user setting with multi-trapdoor.
As for any cryptographic algorithm, the deployment of post-quantum CCA-secure public-key encryption schemes may come with the need to be protected against side-channel attacks. For existing post-quantum schemes that have not been developed with leakage in mind, recent results showed that the cost of these protections can make their implementations more expensive by orders of magnitude. In this paper, we describe a new design, coined \(\texttt{POLKA}\), that is specifically tailored for this...
Property-preserving hashing (PPH) consists of a family of compressing hash functions $h$ such that, for any two inputs $x,y$, we can correctly identify whether some property $P(x,y)$ holds given only the digests $h(x),h(y)$. In a basic PPH, correctness should hold with overwhelming probability over the choice of $h$ when $x,y$ are worst-case values chosen a-priori and independently of $h$. In an adversarially robust PPH (RPPH), correctness must hold even when $x,y$ are chosen adversarially...
Multiparty randomized encodings (Applebaum, Brakerski, and Tsabary, SICOMP 2021) reduce the task of securely computing a complicated multiparty functionality $f$ to the task of securely computing a simpler functionality $g$. The reduction is non-interactive and preserves information-theoretic security against a passive (semi-honest) adversary, also referred to as privacy. The special case of a degree-2 encoding $g$ (2MPRE) has recently found several applications to secure multiparty...
We propose a lattice-based scheme for secret key generation from Gaussian sources in the presence of an eavesdropper, and show that it achieves the strong secret key capacity in the case of degraded source models, as well as the optimal secret key / public communication rate trade-off. The key ingredients of our scheme are a lattice extractor to extract the channel intrinsic randomness, based on the notion of flatness factor, together with a randomized lattice quantization technique to...
The protection of confidential information is a global issue and block encryption algorithms are the most reliable option for securing data. The famous information theorist, Claude Shannon has given two desirable characteristics that should exist in a strong cipher which are substitution and permutation in their fundamental research on "Communication Theory of Secrecy Systems.” block ciphers strictly follow the substitution and permutation principle in an iterative manner to generate a...
In recent years, the number of applications of the repeated squaring assumption has been growing rapidly. The assumption states that, given a group element $x$, an integer $T$, and an RSA modulus $N$, it is hard to compute $x^{2^T} \mod N$---or even decide whether $y\stackrel{?}{=}x^{2^T} \mod N$---in parallel time less than the trivial approach of computing $T$ sequential squarings. This rise has been driven by efficient interactive proofs for repeated squaring, opening the door to more...
Anonymous credentials systems (ACs) are a powerful cryptographic tool for privacy-preserving applications and provide strong user privacy guarantees for authentication and access control. ACs allow users to prove possession of attributes encoded in a credential without revealing any information beyond them. A delegatable AC (DAC) system is an enhanced AC system that allows the owners of credentials to delegate the obtained credential to other users. This allows to model hierarchies as...
Threshold signatures are a crucial tool for many distributed protocols. As shown by Cachin, Kursawe, and Shoup (PODC '00), schemes with unique signatures are of particular importance, as they allow to implement distributed coin flipping very efficiently and without any timing assumptions. This makes them an ideal building block for (inherently randomized) asynchronous consensus protocols. The threshold BLS signature of Boldyreva (PKC '03) is both unique and very compact, but unfortunately...
Indifferentiability is a powerful notion in cryptography. If a construction is proven to be indifferentiable from an ideal object, it can under certain assumptions instantiate that ideal object in higher-level constructions. Indifferentiability is a particularly useful model for cryptographic hash functions, and myriad results are known proving that a hash function behaves like a random oracle under the assumption that the underlying primitive (typically a compression function, a block...
In this paper, the recommended implementation of the post-quantum key exchange SIKE for Cortex-M4 is attacked through power analysis with a single trace by clustering with the $k$-means algorithm the power samples of all the invocations of the elliptic curve point swapping function in the constant-time coordinate-randomized three point ladder. Because each sample depends on whether two consecutive bits of the private key are the same or not, a successful clustering (with $k=2$) leads to the...
Seminal works by Cohn-Gordon, Cremers, Dowling, Garratt, and Stebila [EuroS&P 2017] and Alwen, Coretti and Dodis [EUROCRYPT 2019] provided the first formal frameworks for studying the widely-used Signal Double Ratchet (DR for short) algorithm. In this work, we develop a new Universally Composable (UC) definition F_DR that we show is provably achieved by the DR protocol. Our definition captures not only the security and correctness guarantees of the DR already identified in the prior...
Byzantine agreement is a fundamental primitive in cryptography and distributed computing, and minimizing its round complexity is of paramount importance. It is long known that any randomized $r$-round protocol must fail with probability at least $(c\cdot r)^{-r}$, for some constant $c$, when the number of corruptions is linear in the number of parties, $t = \theta(n)$. On the other hand, current protocols fail with probability at least $2^{-r}$. Whether we can match the lower bound agreement...
A $t$-private circuit for a function $f$ is a randomized Boolean circuit $C$ that maps a randomized encoding of an input $x$ to an encoding of the output $f(x)$, such that probing $t$ wires anywhere in $C$ reveals nothing about $x$. Private circuits can be used to protect embedded devices against side-channel attacks. Motivated by the high cost of generating fresh randomness in such devices, several works have studied the question of minimizing the randomness complexity of private...