Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Manh Duong Phung

  • Manh Duong Phung is currently a Senior Lecturer at the Fulbright University Vietnam. He has had over 14 years of rese... moreedit
This paper addresses the problem of controlling multiple unmanned aerial vehicles (UAVs) cooperating in a formation to carry out a complex task such as surface inspection. We first use the virtual leader-follower model to determine the... more
This paper addresses the problem of controlling multiple unmanned aerial vehicles (UAVs) cooperating in a formation to carry out a complex task such as surface inspection. We first use the virtual leader-follower model to determine the topology and trajectory of the formation. A double-loop control system combining backstepping and sliding mode control techniques is then designed for the UAVs to track the trajectory. A radial basis function neural network (RBFNN) capable of estimating external disturbances is developed to enhance the robustness of the controller. The stability of the controller is proven by using the Lyapunov theorem. A number of comparisons and software-in-the-loop (SIL) tests have been conducted to evaluate the performance of the proposed controller. The results show that our controller not only outperforms other state-of-the-art controllers but is also sufficient for complex tasks of UAVs such as collecting surface data for inspection. The source code of our controller can be found at https://github.com/duynamrcv/rbf_bsmc.
This paper presents new cooperative path planning algorithms for multiple unmanned aerial vehicles (UAVs) using Game theory-based particle swarm optimization (GPSO). First, the formation path planning is formulated into the minimization... more
This paper presents new cooperative path planning algorithms for multiple unmanned aerial vehicles (UAVs) using Game theory-based particle swarm optimization (GPSO). First, the formation path planning is formulated into the minimization of a cost function that incorporates multiple objectives and constraints for each UAV. A framework based on game theory is then developed to cast the minimization into the problem of finding a Stackelberg-Nash equilibrium. Next, hierarchical particle swarm optimization algorithms are developed to obtain the global optimal solution. Simulation results show that the GPSO algorithm can generate efficient and feasible flight paths for multiple UAVs, outperforming other path planning methods in terms of convergence rate and flexibility. The formation can adjust its geometrical shape to accommodate a working environment. Experimental tests on a group of three UAVs confirm the advantages of the proposed approach for a practical application. INDEX TERMS Cooperative path planning, UAV, Stackelberg-Nash game, PSO.
This paper presents a new Lyapunov-based nonlinear model predictive controller (LNMPC) for the attitude control problem of unmanned aerial vehicles (UAVs), which is essential for their functioning operation. The controller is designed... more
This paper presents a new Lyapunov-based nonlinear model predictive controller (LNMPC) for the attitude control problem of unmanned aerial vehicles (UAVs), which is essential for their functioning operation. The controller is designed based on a quadratic cost function integrating UAV dynamics and system constraints. An additional contraction constraint is then introduced to ensure closed-loop system stability. That constraint is fulfilled via a Lyapunov function derived from a sliding mode controller (SMC). The feasibility and stability of the LNMPC are finally proved. Simulation and comparison results show that the proposed controller guarantees the system stability and outperforms other state-of-the-art nonlinear controllers such as the backstepping controller (BSC) and SMC. In addition, the proposed controller can be integrated into an existing UAV model in the Gazebo simulator to perform software-in-the-loop tests. The results show that the LNMPC is better than the built-in PID controller of the UAV, which confirms the validity and applicability of our proposed approach.
This paper presents a novel iterative learning sliding mode controller (ILSMC) that can be applied to the trajectory tracking of quadrotor unmanned aerial vehicles (UAVs) subject to model uncertainties and external disturbances. Here, the... more
This paper presents a novel iterative learning sliding mode controller (ILSMC) that can be applied to the trajectory tracking of quadrotor unmanned aerial vehicles (UAVs) subject to model uncertainties and external disturbances. Here, the proposed ILSMC is integrated in the outer loop of a controlled system. The control development, conducted in the discrete-time domain, does not require a priori information of the disturbance bound as with conventional SMC techniques. It only involves an equivalent control term for the desired dynamics in the closed loop and an iterative learning term to drive the system state toward the sliding surface to maintain robust performance. By learning from previous iterations, the ILSMC can yield very accurate tracking performance when a sliding mode is induced without control chattering. The design is then applied to the attitude control of a 3DR Solo UAV with a built-in PID controller. The simulation results and experimental validation with real-time data demonstrate the advantages of the proposed control scheme over existing techniques.
This paper presents a new algorithm named spherical vector-based particle swarm optimization (SPSO) to deal with the problem of path planning for unmanned aerial vehicles (UAVs) in complicated environments subjected to multiple threats. A... more
This paper presents a new algorithm named spherical vector-based particle swarm optimization (SPSO) to deal with the problem of path planning for unmanned aerial vehicles (UAVs) in complicated environments subjected to multiple threats. A cost function is first formulated to convert the path planning into an optimization problem that incorporates requirements and constraints for the feasible and safe operation of the UAV. SPSO is then used to find the optimal path that minimizes the cost function by efficiently searching the configuration space of the UAV via the correspondence between the particle position and the speed, turn angle and climb/dive angle of the UAV. To evaluate the performance of SPSO, eight benchmarking scenarios have been generated from real digital elevation model maps. The results show that the proposed SPSO outperforms not only other particle swarm optimization (PSO) variants including the classic PSO, phase angle-encoded PSO and quantum-behave PSO but also other state-of-the-art metaheuristic optimization algorithms including the genetic algorithm (GA), artificial bee colony (ABC), and differential evolution (DE) in most scenarios. In addition, experiments have been conducted to demonstrate the validity of the generated paths for real UAV operations. Source code of the algorithm can be found at https://github.com/duongpm/SPSO.
Drone imagery is increasingly used in automated inspection for infrastructure surface defects, especially in hazardous or unreachable environments. In machine vision, the key to crack detection rests with robust and accurate algorithms... more
Drone imagery is increasingly used in automated inspection for infrastructure surface defects, especially in hazardous or unreachable environments. In machine vision, the key to crack detection rests with robust and accurate algorithms for image processing. To this end, this paper proposes a deep learning approach using hierarchical convolutional neural networks with feature preservation (HCNNFP) and an intercontrast iterative thresholding algorithm for image binarization. First, a set of branch networks is proposed, wherein the output of previous convolutional blocks is half-sizedly concatenated to the current ones to reduce the obscuration in the down-sampling stage taking into account the overall information loss. Next, to extract the feature map generated from the enhanced HCNN, a binary contrast-based autotuned thresholding (CBAT) approach is developed at the post-processing step, where patterns of interest are clustered within the probability map of the identified features. The proposed technique is then applied to identify surface cracks on the surface of roads, bridges or pavements. An extensive comparison with existing techniques is conducted on various datasets and subject to a number of evaluation criteria including the average F-measure (AFβ) introduced here for dynamic quantification of the performance. Experiments on crack images, including those captured by unmanned aerial vehicles inspecting a monorail bridge. The proposed technique outperforms the existing methods on various tested datasets especially for GAPs dataset with an increase of about 1.4% in terms of AFβ while the mean percentage error drops by 2.2%. Such performance demonstrates the merits of the proposed HCNNFP architecture for surface defect inspection.
This paper presents a novel algorithm named the motion-encoded particle swarm optimization (MPSO) for finding a moving target with unmanned aerial vehicles (UAVs). From the Bayesian theory, the search problem can be converted to the... more
This paper presents a novel algorithm named the motion-encoded particle swarm optimization (MPSO) for finding a moving target with unmanned aerial vehicles (UAVs). From the Bayesian theory, the search problem can be converted to the optimization of a cost function that represents the probability of detecting the target. Here, the proposed MPSO is developed to solve that problem by encoding the search trajectory as a series of UAV motion paths evolving over the generation of particles in a PSO algorithm. This motion-encoded approach allows for preserving important properties of the swarm including the cognitive and social coherence, and thus resulting in better solutions. Results from extensive simulations with existing methods show that the proposed MPSO improves the detection performance by 24% and time performance by 4.71 times compared to the original PSO, and moreover, also outperforms other state-of-the-art metaheuristic optimization algorithms including the artificial bee colony (ABC), ant colony optimization (ACO), genetic algorithm (GA), differential evolution (DE), and tree-seed algorithm (TSA) in most search scenarios. Experiments have been conducted with real UAVs in searching for a dynamic target in different scenarios to demonstrate MPSO merits in a practical application.
This paper presents a novel algorithm named the motion-encoded particle swarm optimization (MPSO) for finding a moving target with unmanned aerial vehicles (UAVs). From the Bayesian theory, the search problem can be converted to the... more
This paper presents a novel algorithm named the motion-encoded particle swarm optimization (MPSO) for finding a moving target with unmanned aerial vehicles (UAVs). From the Bayesian theory, the search problem can be converted to the optimization of a cost function that represents the probability of detecting the target. Here, the proposed MPSO is developed to solve that problem by encoding the search trajectory as a series of UAV motion paths evolving over the generation of particles in a PSO algorithm. This motion-encoded approach allows for preserving important properties of the swarm including the cognitive and social coherence, and thus resulting in better solutions. Results from extensive simulations with existing methods show that the proposed MPSO improves the detection performance by 24% and time performance by 4.71 times compared to the original PSO, and moreover, also outperforms other state-of-the-art metaheuristic optimization algorithms including the artificial bee colony (ABC), ant colony optimization (ACO), genetic algorithm (GA), differential evolution (DE), and tree-seed algorithm (TSA) in most search scenarios. Experiments have been conducted with real UAVs in searching for a dynamic target in different scenarios to demonstrate MPSO merits in a practical application.
Unmanned aerial vehicles (UAV) are expected to replace human in hazardous tasks of surface inspection due to their flexibility in operating space and capability of collecting high quality visual data. In this study, we propose enhanced... more
Unmanned aerial vehicles (UAV) are expected to replace human in hazardous tasks of surface inspection due to their flexibility in operating space and capability of collecting high quality visual data. In this study, we propose enhanced hierarchical convolutional neu-ral networks (HCNN) to detect cracks from image data collected by UAVs. Unlike traditional HCNN, here a set of branch networks is utilised to reduce the obscuration in the down-sampling process. Moreover, the feature preserving blocks combine the current and previous terms from the convolutional blocks to provide input to the loss functions. As a result, the weights of resized images can be reduced to minimise the information loss. Experiments on images of different crack datasets have been carried out to demonstrate the effectiveness of proposed HCNN.
Multisensor fusion of air pollutant data in smart buildings remains an important input to address the well-being and comfort perceived by their inhabitants. An integrated sensing system is part of a smart building where real-time indoor... more
Multisensor fusion of air pollutant data in smart buildings remains an important input to address the well-being and comfort perceived by their inhabitants. An integrated sensing system is part of a smart building where real-time indoor air quality data are monitored round the clock using sensors and operating in the Internet-of-Things (IoT) environment. In this work, we propose an air quality management system merging indoor air quality index (IAQI) and humidex into an enhanced indoor air quality index (EIAQI) by using sensor data on a real-time basis. Here, indoor air pollutant levels are measured by a network of waspmote sensors while IAQI and humidex data are fused together using an extended fractional-order Kalman filter (EFKF). According to the obtained EIAQI, overall air quality alerts are provided in a timely fashion for accurate prediction with enhanced performance against measurement noise and nonlinearity. The estimation scheme is implemented by using the fractional-order modeling and control (FOMCON) toolbox. A case study is analysed to prove the effectiveness and validity of the proposed approach.
Efficiency and reliability have been essential requirements for energy generation in smart cities. This study presents the design and development of dependable control schemes for microgrid management, which can be seamlessly integrated... more
Efficiency and reliability have been essential requirements for energy generation in smart cities. This study presents the design and development of dependable control schemes for microgrid management, which can be seamlessly integrated into the management system of smart buildings. Here, to recover from failures in the solar energy system of a building microgrid, dependable controllers are proposed along with their hardware implementation. The system features the use of Internet of Things (IoT) as its core to coordinate the operation of multiple subsystems in a scalable manner. The control scheme uses a number of controllers cooperatively functioning via a token-based mechanism within the network to provide redundancy and thus reliability in solar tracking. The system exploits data from not only local in-situ sensors but also online sources via IoT networks for fault-tolerant control. Experiments conducted in a 12-storey building indicate that the harvested solar energy meets the design requirement while the control reliability is maintained in face of communication or hardware disruptions. The results confirmed the validity of the proposed approach and its applicability to energy management in smart buildings.
In this paper, we propose an algorithm for the formation of multiple UAVs used in vision-based inspection of infrastructure. A path planning algorithm is first developed by using a variant of the particle swarm optimisation, named θ-PSO,... more
In this paper, we propose an algorithm for the formation of multiple UAVs used in vision-based inspection of infrastructure. A path planning algorithm is first developed by using a variant of the particle swarm optimisation, named θ-PSO, to generate a feasible path for the overall formation configuration taken into account the constraints for visual inspection. Here, we introduced a cost function that includes various constraints on flight safety and visual inspection. A reconfigurable topology is then added based on the use of intermediate waypoints to allow the formation to avoid collision with obstacles during operation. The planned path and formation are then combined to derive the trajectory and velocity profiles for each UAV. Experiments have been conducted for the task of inspecting a light rail bridge. The results confirmed the validity and effectiveness of the proposed algorithm.
This paper presents a novel method, called the Summit Navigator, to effectively extract local maxima of an image histogram for multi-object segmentation of images. After smoothing with a moving average filter, the obtained histogram is... more
This paper presents a novel method, called the Summit Navigator, to effectively extract local maxima of an image histogram for multi-object segmentation of images. After smoothing with a moving average filter, the obtained histogram is analyzed, based on the data density and distribution to find the best observing location. An observability index for each initial peak is proposed to evaluate if it can be considered as dominant by using the calculated observing location. Recursive algorithms are then developed for peak searching and merging to remove any false detection of peaks that are located on one side of each mode. Experimental results demonstrated the advantages of the proposed approach in terms of accuracy and consistency in different reputable datasets.
This paper addresses the problem of crack detection which is essential for health monitoring of built infrastructure. Our approach includes two stages, data collection using unmanned aerial vehicles (UAVs) and crack detection using... more
This paper addresses the problem of crack detection which is essential for health monitoring of built infrastructure. Our approach includes two stages, data collection using unmanned aerial vehicles (UAVs) and crack detection using histogram analysis. For the data collection, a 3D model of the structure is first created by using laser scanners. Based on the model, geometric properties are extracted to generate way points necessary for navigating the UAV to take images of the structure. Then, our next step is to stick together those obtained images from the overlapped field of view. The resulting image is then clustered by histogram analysis and peak detection. Potential cracks are finally identified by using locally adaptive thresholds. The whole process is automatically carried out so that the inspection time is significantly improved while safety hazards can be minimised. A prototypical system has been developed for evaluation and experimental results are included.
Solar energy generation requires efficient monitoring and management in moving towards technologies for net-zero energy buildings. This paper presents a dependable control system based on the Internet of Things (IoT) to control and manage... more
Solar energy generation requires efficient monitoring and management in moving towards technologies for net-zero energy buildings. This paper presents a dependable control system based on the Internet of Things (IoT) to control and manage the energy flow of renewable energy collected by solar panels within a microgrid. Data for optimal control include not only measurements from local sensors but also meteorological information retrieved in real-time from online sources. For system fault tolerance across the whole distributed control system featuring multiple controllers, dependable controllers are developed to control and optimise the tracking performance of photovoltaic arrays to maximally capture solar radiation and maintain system resilience and reliability in real time despite failures of one or more redundant controllers due to a problem with communication, hardware or cybersecurity. Experimental results have been obtained to evaluate the validity of the proposed approach.
This paper addresses the problem of lane detection which is fundamental for self-driving vehicles. Our approach exploits both colour and depth information recorded by a single RGB-D camera to better deal with negative factors such as... more
This paper addresses the problem of lane detection which is fundamental for self-driving vehicles. Our approach exploits both colour and depth information recorded by a single RGB-D camera to better deal with negative factors such as lighting conditions and lane-like objects. In the approach, colour and depth images are first converted to a half-binary format and a 2D matrix of 3D points. They are then used as the inputs of template matching and geometric feature extraction processes to form a response map so that its values represent the probability of pixels being lane markers. To further improve the results, the template and lane surfaces are finally refined by principal component analysis and lane model fitting techniques. A number of experiments have been conducted on both synthetic and real datasets. The result shows that the proposed approach can effectively eliminate unwanted noise to accurately detect lane markers in various scenarios. Moreover, the processing speed of 20 frames per second under hardware configuration of a popular laptop computer allows the proposed algorithm to be implemented for real-time autonomous driving applications.
This work addresses the problem of robust attitude control of quadcopters. First, the mathematical model of the quadcopter is derived considering factors such as nonlinearity, external disturbances, uncertain dynamics and strong coupling.... more
This work addresses the problem of robust attitude control of quadcopters. First, the mathematical model of the quadcopter is derived considering factors such as nonlinearity, external disturbances, uncertain dynamics and strong coupling. An adaptive twisting sliding mode control algorithm is then developed with the objective of controlling the quadcopter to track desired attitudes under various conditions. For this, the twisting sliding mode control law is modified with a proposed gain adaptation scheme to improve the control transient and tracking performance. Extensive simulation studies and comparisons with experimental data have been carried out for a Solo quadcopter. The results show that the proposed control scheme can achieve strong robustness against disturbances while is adaptable to parametric variations.
This paper presents a novel and feasible path planning technique for a group of unmanned aerial vehicles (UAVs) conducting surface inspection of infrastructure. The ultimate goal is to minimise the travel distance of UAVs while... more
This paper presents a novel and feasible path planning technique for a group of unmanned aerial vehicles (UAVs) conducting surface inspection of infrastructure. The ultimate goal is to minimise the travel distance of UAVs while simultaneously avoid obstacles, and maintain altitude constraints as well as the shape of the UAV formation. A multiple-objective optimisation algorithm, called the Angle-encoded Particle Swarm Optimization (theta-PSO) algorithm, is proposed to accelerate the swarm convergence with angular velocity and position being used for the location of particles. The whole formation is modelled as a virtual rigid body and controlled to maintain a desired geometric shape among the paths created while the centroid of the group follows a pre-determined trajectory. Based on the testbed of 3DR Solo drones equipped with a proprietary Mission Planner, and the Internet-of-Things (IoT) for multi-directional transmission and reception of data between the UAVs, extensive experiments have been conducted for triangular formation maintenance along a monorail bridge. The results obtained confirm the feasibility and effectiveness of the proposed approach.
In built infrastructure monitoring, an efficient path planning algorithm is essential for robotic inspection of large surfaces using computer vision. In this work, we first formulate the inspection path planning problem as an extended... more
In built infrastructure monitoring, an efficient path planning algorithm is essential for robotic inspection of large surfaces using computer vision. In this work, we first formulate the inspection path planning problem as an extended travelling salesman problem (TSP) in which both the coverage and obstacle avoidance were taken into account. An enhanced discrete particle swarm optimization (DPSO) algorithm is then proposed to solve the TSP, with performance improvement by using deterministic initialization, random mutation, and edge exchange. Finally, we take advantage of parallel computing to implement the DPSO in a GPU-based framework so that the computation time can be significantly reduced while keeping the hardware requirement unchanged. To show the effectiveness of the proposed algorithm, experimental results are included for datasets obtained from UAV inspection of an office building and a bridge.
This paper proposes a thresholding approach for crack detection in an unmanned aerial vehicle (UAV) based infrastructure inspection system. The proposed algorithm performs recur-sively on the intensity histogram of UAV-taken images to... more
This paper proposes a thresholding approach for crack detection in an unmanned aerial vehicle (UAV) based infrastructure inspection system. The proposed algorithm performs recur-sively on the intensity histogram of UAV-taken images to exploit their crack-pixels appearing at the low intensity interval. A quantified criterion of interclass contrast is proposed and employed as an object cost and stop condition for the recursive process. Experiments on different datasets show that our algorithm outper-forms different segmentation approaches to accurately extract crack features of some commercial buildings.
In this paper, we present a new discrete-time Fast Terminal Sliding Mode (FTSM) controller for mirror-based pointing systems. We first derive the decoupled model of those systems and then estimate the parameters using a nonlinear... more
In this paper, we present a new discrete-time Fast Terminal Sliding Mode (FTSM) controller for mirror-based pointing systems. We first derive the decoupled model of those systems and then estimate the parameters using a nonlinear least-square identification method. Based on the derived model, we design a FTSM sliding manifold in the continuous domain. We then exploit the Euler discretization on the designed FTSM sliding surfaces to synthesize a discrete-time controller. Furthermore, we improve the transient dynamics of the sliding surface by adding a linear term. Finally, we prove the stability of the proposed controller based on the Sarpturk reaching condition. Extensive simulations, followed by comparisons with the Terminal Sliding Mode (TSM) and Model Predictive Control (MPC) have been carried out to evaluate the effectiveness of the proposed approach. A comparative study with data obtained from a real-time experiment was also conducted. The results indicate the advantage of the proposed method over the other techniques.
Abstract—Dealing with the uncertainties of Internet characte-ristics is an important issue that needs being taken into account in developing Internet-based real-time systems. In this paper, we present our approach in applying fuzzy logic... more
Abstract—Dealing with the uncertainties of Internet characte-ristics is an important issue that needs being taken into account in developing Internet-based real-time systems. In this paper, we present our approach in applying fuzzy logic to develop back-up mechanisms ...
Abstract—Dealing with the uncertainties of Internet characte-ristics is an important issue that needs being taken into account in developing Internet-based real-time systems. In this paper, we present our approach in applying fuzzy logic... more
Abstract—Dealing with the uncertainties of Internet characte-ristics is an important issue that needs being taken into account in developing Internet-based real-time systems. In this paper, we present our approach in applying fuzzy logic to develop back-up mechanisms ...
This study proposes an approach to segment human object from a depth image based on histogram of depth values. The region of interest is first extracted based on a predefined threshold for histogram regions. A region growing process is... more
This study proposes an approach to segment human object from a depth image based on histogram of depth values. The region of interest is first extracted based on a predefined threshold for histogram regions. A region growing process is then employed to separate multiple human bodies with the same depth interval. Our contribution is the identification of an adaptive growth threshold based on the detected histogram region. To demonstrate the effectiveness of the proposed method, an application in driver distraction detection was introduced. After successfully extracting the driver's position inside the car, we came up with a simple solution to track the driver motion. With the analysis of the difference between initial and current frame, a change of cluster position or depth value in the interested region, which cross the preset threshold, is considered as a distracted activity. The experiment results demonstrated the success of the algorithm in detecting typical distracted driving activities such as using phone for calling or texting, adjusting internal devices and drinking in real time.
Research Interests: