Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Christiane Fæste

    Ciguatoxins (CTX) are potent marine neurotoxins, which can bioaccumulate in seafood, causing a severe and prevalent human illness known as ciguatera poisoning (CP). Despite the worldwide impact of ciguatera, effective disease management... more
    Ciguatoxins (CTX) are potent marine neurotoxins, which can bioaccumulate in seafood, causing a severe and prevalent human illness known as ciguatera poisoning (CP). Despite the worldwide impact of ciguatera, effective disease management is hindered by a lack of knowledge regarding the movement and biotransformation of CTX congeners in marine food webs, particularly in the Caribbean and Western Atlantic. In this study we investigated the hepatic biotransformation of C-CTX across several fish and mammalian species through a series of in vitro metabolism assays focused on phase I (CYP P450; functionalization) and phase II (UGT; conjugation) reactions. Using liquid chromatography high-resolution mass spectrometry to explore potential C-CTX metabolites, we observed two glucuronide products of C-CTX-1/-2 and provided additional evidence from high-resolution tandem mass spectrometry to support their identification. Chemical reduction experiments confirmed that the metabolites were comprised of four distinct glucuronide products with the sugar attached at two separate sites on C-CTX-1/-2 and excluded the C-56 hydroxyl group as the conjugation site.Glucuronidation is a novel biotransformation pathway not yet reported for CTX or other related polyether phycotoxins, yet its occurrence across all fish species tested suggests that it could be a prevalent and important detoxification mechanism in marine organisms. The absence of glucuronidation observed in this study for both rat and human microsomes suggests that alternate biotransformation pathways may be dominant in higher vertebrates.
    Det er gjort flere eksperimentelle forsøk med formål å utvikle klor som behandling mot Gyrodactylus salaris i elver. Gjennom disse forsøkene er det funnet at svært lave konsentrasjoner av klor tilsatt som monokloramin, kan fjerne G.... more
    Det er gjort flere eksperimentelle forsøk med formål å utvikle klor som behandling mot Gyrodactylus salaris i elver. Gjennom disse forsøkene er det funnet at svært lave konsentrasjoner av klor tilsatt som monokloramin, kan fjerne G. salaris fra laksunger i løpet av få dager uten å ha synlige negative effekter på laksen. Klor kan være giftig for fisk, og flere arter innenfor laksefamilien (Salmonidae) er beskrevet som svært følsomme for klor. Det er imidlertid stor variasjon i oppgitte konsentrasjoner for akutt giftighet. Kronisk giftighet for klor er observert etter eksponering for residualt klor helt ned i 3 μg/l, men da over en eksponeringsperiode på 12 uker. Hensikten med dette prosjektet har vært å undersøke om, og eventuelt hvordan, ettårige og toårige laksunger påvirkes av eksponering for klorkonsentrasjoner som er relevant for behandling mot parasitten. Det ble også undersøkt om fisken evner å restituere eventuelle subletale effekter fra kloreksponeringen. Eksponering for vann tilsatt 30 og 60 μg klor/l ga kun små blodfysiologiske forandringer hos fisken. Alle fysiologiske forandringene, med unntak av reduserte hematokritverdier hos gruppen med ettåringer, restituerte også raskt etter endt kloreksponering. Kloreksponeringen ga ingen patologiske forandringer i gjellene, og det ble ikke registrert vesentlige forskjeller i protein- og metabolittsammensetningen i slimlaget til kloreksponert fisk sammenlignet med kontrollfisk. Det var liten forskjell i fysiologisk effekt på laksungene som ble eksponert for de to klordosene. Dette gir en viss grad av fleksibilitet ved dosering av kloramin til et vassdrag, og lokale variasjoner i klorkonsentrasjon kan tolereres av fisken. Forsøket indikerer at laksunger kan eksponeres i inntil 17 dager for dobbelt så høy klordose som tidligere har vist seg å fjerne parasitten fra laks i løpet av 2-4 dager. En slik fleksibilitet representerer en robusthet for eventuell bruk av kloramin som behandlingskjemikalium mot G. salaris
    Oat (Avena sativa L.) ranks seventh in the world cereal production and is considered to be an important source for many valuable components of nutritional and biological importance, i.e. proteins, fats, carbohydrates, fibre, minerals and... more
    Oat (Avena sativa L.) ranks seventh in the world cereal production and is considered to be an important source for many valuable components of nutritional and biological importance, i.e. proteins, fats, carbohydrates, fibre, minerals and vitamins. Because of these properties the amount of oat used for human consumption has increased progressively during the last years. Unfortunately, the quality of this grain crop is often compromised by mycotoxin contamination, which is relatively ubiquitous despite efforts to control the problem. Therefore, it is important to investigate the distribution pattern of mycotoxins and their conjugated derivatives in contaminated oat grains. For this purpose we have developed a state-of-the-art multi-mycotoxin high-resolution mass spectrometry method and analysed oat samples for their content of the most important mycotoxins commonly occurring in Norwegian cereal grain. Quantitative mapping of selected Fusarium free and modified mycotoxins was performed...
    Celery is acknowledged as a major food allergen in Europe, and mandatory labeling for preprocessed foods has been implemented. However, no methods for the specific detection of celery protein in foods have been published. In the present... more
    Celery is acknowledged as a major food allergen in Europe, and mandatory labeling for preprocessed foods has been implemented. However, no methods for the specific detection of celery protein in foods have been published. In the present study, a sandwich celery ELISA using polyclonal anticelery antibodies for capture and detection was developed and validated. The method has an LOD of 0.5 mg/kg in buffer; however, it is applicable only for the screening of food products because of extensive cross-reactivity with potato and carrot proteins. Using nanoLCion-trap MS/MS, a number of proteins in the three vegetable species were identified as candidates for causing cross-reactions due to amino acid sequence homologies. Among others, a novel patatin (Sola t 1)-like protein was detected in celery and a flavin adenine dinucleotide binding domain-containing protein (Api g 5)-like protein was identified in carrot. The utility of triple-quadrupole MS/MS for specific and quantitative analysis of ...
    Feed safety is a necessity for animal health and welfare as well as prerequisite for food safety and human health. Wheat gluten (WG) is considered as a valuable protein source in fish feed due to its suitability as a feed binder, high... more
    Feed safety is a necessity for animal health and welfare as well as prerequisite for food safety and human health. Wheat gluten (WG) is considered as a valuable protein source in fish feed due to its suitability as a feed binder, high digestibility, good amino acid profile, energy density and most importantly, due to its relatively low level of anti-nutritional factors (ANFs). The main aim of this study was to identify the impact of dietary WG on salmon health by analysing growth, feed efficiency and the hepatic and intestinal transcriptomes. The fish were fed either control diet with fishmeal (FM) as the only source of protein or diets, where 15% or 30% of the FM were replaced by WG. The fish had a mean initial weight of 223 g and approximately doubled their weight during the 9-week experiment. Salmon fed on 30% WG showed reduced feed intake compared to the 15% and FM fed groups. The liver was the less affected organ but fat content and activities of the liver health markers in pla...
    Ciguatoxins (CTX) are potent marine neurotoxins, which can bioaccumulate in seafood, causing a severe and prevalent human illness known as ciguatera poisoning (CP). Despite the worldwide impact of ciguatera, effective disease management... more
    Ciguatoxins (CTX) are potent marine neurotoxins, which can bioaccumulate in seafood, causing a severe and prevalent human illness known as ciguatera poisoning (CP). Despite the worldwide impact of ciguatera, effective disease management is hindered by a lack of knowledge regarding the movement and biotransformation of CTX congeners in marine food webs, particularly in the Caribbean and Western Atlantic. In this study we investigated the hepatic biotransformation of C-CTX across several fish and mammalian species through a series of in vitro metabolism assays focused on phase I (CYP P450; functionalization) and phase II (UGT; conjugation) reactions. Using liquid chromatography high-resolution mass spectrometry to explore potential C-CTX metabolites, we observed two glucuronide products of C-CTX-1/-2 and provided additional evidence from high-resolution tandem mass spectrometry to support their identification. Chemical reduction experiments confirmed that the metabolites were comprised of four distinct glucuronide products with the sugar attached at two separate sites on C-CTX-1/-2 and excluded the C-56 hydroxyl group as the conjugation site. Glucuronidation is a novel biotransformation pathway not yet reported for CTX or other related polyether phycotoxins, yet its occurrence across all fish species tested suggests that it could be a prevalent and important detoxification mechanism in marine organisms. The absence of glucuronidation observed in this study for both rat and human microsomes suggests that alternate biotransformation pathways may be dominant in higher vertebrates.
    ABSTRACT Deoxynivalenol (DON) is one of the most prevalent Fusarium mycotoxins in grain and can cause economic losses in pig farming due to reduced feed consumption and lower weight gains. Biodetoxification of mycotoxins using bacterial... more
    ABSTRACT Deoxynivalenol (DON) is one of the most prevalent Fusarium mycotoxins in grain and can cause economic losses in pig farming due to reduced feed consumption and lower weight gains. Biodetoxification of mycotoxins using bacterial strains has been a focus of research for many years. However, only a few in vivo studies have been conducted on the effectiveness of microbial detoxification of fusariotoxins. This study was therefore aimed at investigating the effect of a feed additive containing the bacterial strain Coriobacteriaceum DSM 11798 (the active ingredient in Biomin® BBSH 797) on growth performance and blood parameters, as well as uptake and metabolism of DON, in growing pigs. Forty-eight crossbred (Landrace-Yorkshire/Duroc-Duroc) weaning pigs were fed with pelleted feed made from naturally contaminated oats, with DON at four concentration levels: (1) control diet (DON < 0.2 mg kg−1), (2) low-contaminated diet (DON = 0.92 mg kg−1), (3) medium-contaminated diet (DON = 2.2 mg kg−1) and (4) high-contaminated diet (DON = 5.0 mg kg−1) and equivalent diets containing DSM 11798 as feed additive. During the first 7 days of exposure, pigs in the highest-dose group showed a 20–28% reduction in feed intake and a 24–34% reduction in weight gain compared with pigs in the control and low-dose groups. These differences were levelled out by study completion. Towards the end of the experiment, dose-dependent reductions in serum albumin, globulin and total serum protein were noted in the groups fed with DON-contaminated feed compared with the controls. The addition of DSM 11798 had no effect on the DON-related clinical effects or on the plasma concentrations of DON. The ineffectiveness of the feed additive in the present study could be a consequence of its use in pelleted feed, which might have hindered its rapid release, accessibility or detoxification efficiency in the pig’s gastrointestinal tract.
    Food allergy affects up to 6% of Europeans. Allergen identification is important for the risk assessment and management of the inadvertent presence of allergens in foods. The VITAL® initiative for voluntary incidental trace allergen... more
    Food allergy affects up to 6% of Europeans. Allergen identification is important for the risk assessment and management of the inadvertent presence of allergens in foods. The VITAL® initiative for voluntary incidental trace allergen labeling suggests protein reference doses, based on clinical reactivity in food challenge studies, at or below which voluntary labelling is unnecessary. Here, we investigated if current analytical methodology could verify the published VITAL® 2.0 doses, that were available during this analysis, in serving sizes between 5 and 500 g. Available data on published and commercial ELISA, PCR and mass spectrometry methods, especially for the detection of peanuts, soy, hazelnut, wheat, cow's milk and hen's egg were reviewed in detail. Limit of detection, quantitative capability, matrix compatibility, and specificity were assessed. Implications by the recently published VITAL® 3.0 doses were also considered. We conclude that available analytical methods are capable of reasonably robust detection of peanut, soy, hazelnut and wheat allergens for levels at or below the VITAL® 2.0 and also 3.0 doses, with some methods even capable of achieving this in a large 500 gram serving size. Cow's milk and hen's egg are more problematic, largely due to matrix/processing incompatibility. An unmet need remains for harmonized reporting units, available reference materials, and method ring-trials to enable validation and the provision of comparable measurement results.
    ABSTRACT Epigenetic modifications, such as DNA methylation, can be regulated by nutrition and dietary factors. There has been a large increase in the use of sustainable plant-based protein sources in fish feed due to limitations of... more
    ABSTRACT Epigenetic modifications, such as DNA methylation, can be regulated by nutrition and dietary factors. There has been a large increase in the use of sustainable plant-based protein sources in fish feed due to limitations of fishmeal resources, which are needed to sustain a rapidly growing aquaculture industry. With this major transition from marine ingredients to plant-based diets, fish are abruptly introduced to changes in dietary composition and exposed to a variety of phytochemicals, some of which known to cause epigenetic changes in mammals. However, the effect of plant ingredients on the epigenome of fish is barely understood. In the present study, the nutriepigenomic effects of the addition of pea, soy, and wheat gluten protein concentrate to aquafeeds were investigated using zebrafish as a model. A genome-wide analysis of DNA methylation patterns was performed by reduced representation bisulphite sequencing to examine global epigenetic alterations in the mid intestine after a 42-day feeding trial. We found that inclusion of 30% of wheat gluten, pea and soy protein concentrate in the diet induced epigenetic changes in the mid intestine of zebrafish. A large number of genes and intergenic regions were differentially methylated with plant-based diets. The genes concerned were related to immunity, NF‐κB system, ubiquitin-proteasome pathway, MAPK pathway, and the antioxidant defence system. Epigenetic regulation of several biological processes, including neurogenesis, cell adhesion, response to stress and immunity was also observed. Ultimately, the observed epigenetic changes may enable zebrafish to rapidly regulate inflammation and maintain intestinal homoeostasis when fed plant protein–based diets.
    The Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet, VKM) has on request of The Norwegian Food Safety Authority performed a risk assessment of furan intake in the Norwegian population based on the most... more
    The Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet, VKM) has on request of The Norwegian Food Safety Authority performed a risk assessment of furan intake in the Norwegian population based on the most recent national food consumption surveys. National occurrence data of furan concentrations in food were preferentially used in the risk assessment. When national data were lacking, VKM has used occurrence data of furan from other countries. The assessment has been performed by the VKM Panel on Food Additives, Flavourings, Processing Aids, Materials in Contact with Food and Cosmetics and the VKM Panel on Contaminants.   Furan is a volatile and lipophilic compound formed in a variety of heat-treated commercial foods and contributes to the sensory properties of the product. The substance has been found in a number of foods such as coffee, canned and jarred foods including baby food containing meat and various vegetables. High concentrations of furan hav...
    Enniatins (ENNs) are fungal secondary metabolites that frequently occur in grain in temperate climates. Their toxic potency is connected to their ionophoric character and lipophilicity. The biotransformation of ENNs predominantly takes... more
    Enniatins (ENNs) are fungal secondary metabolites that frequently occur in grain in temperate climates. Their toxic potency is connected to their ionophoric character and lipophilicity. The biotransformation of ENNs predominantly takes place via cytochrome P450 3A (CYP 3A)-dependent oxidation reactions. Possible interaction with ENNs is relevant since CYP3A4 is the main metabolic enzyme for numerous drugs and contaminants. In the present study, we have determined the kinetic characteristics and inhibitory potential of ENNB1 in human liver microsomes (HLM) and CYP3A4-containing nanodiscs (ND). We showed in both in vitro systems that ENNB1 is mainly metabolised by CYP3A4, producing at least eleven metabolites. Moreover, ENNB1 significantly decreased the hydroxylation rates of the typical CYP3A4-substrate midazolam (MDZ). Deoxynivalenol (DON), which is the most prevalent mycotoxin in grain and usually co-occurrs with the ENNs, was not metabolised by CYP3A4 or binding to its active site...
    The mycotoxin enniatin B1 (ENN B1) is widely present in grain-based feed and food products. In the present study, we have investigated how this lipophilic and ionophoric molecule can affect the lysosomal stability and chaperone-mediated... more
    The mycotoxin enniatin B1 (ENN B1) is widely present in grain-based feed and food products. In the present study, we have investigated how this lipophilic and ionophoric molecule can affect the lysosomal stability and chaperone-mediated autophagy (CMA) in wild-type (WT) and in lysosome-associated membrane proteins (LAMP)-1/2 double-deficient (DD) mouse embryonic fibroblasts (MEF). The cell viability and lysosomal pH were assessed using the Neutral Red (NR) cytotoxicity assay and the LysoSensor® Yellow/Blue DND-160, respectively. Changes in the expression of the CMA-related components LAMP-2 and the chaperones heat shock cognate (hsc) 70 and heat shock protein (hsp) 90 were determined in cytosolic extracts by immunoblotting. In the NR assay, LAMP-1/2 DD MEF cells were significantly less sensitive to ENN B1 than WT MEF cells after 24 h exposure to ENN B1 at levels of 2.5–10 μmol/L. Exposure to ENN B1 at concentrations below the half maximal effective concentration (EC50) (1.5–1.7 μmol/L) increased the lysosomal pH in WT MEF, but not in LAMP-1/2 DD cells, suggesting that lysosomal LAMP-2 is an early target of ENN B1-induced lysosomal alkalization and cytotoxicity in MEF cells. Additionally, cytosolic hsp90 and LAMP-2 levels slightly increased after exposure for 4 h, indicating lysosomal membrane permeabilization (LMP). In summary, it appeared that ENN B1 can destabilize the LAMP-2 complex in the lysosomal membrane at concentrations close to the EC50, resulting in the alkalinization of lysosomes, partial LMP, and thereby leakage of CMA-associated components into the cytosol.

    And 49 more