Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Gerard J Boer

Spinal root avulsions result in paralysis of the upper and/or lower extremities. Implanting a peripheral nerve bridge or reinsertion of the avulsed roots in the spinal cord are surgical strategies that lead to some degree of functional... more
Spinal root avulsions result in paralysis of the upper and/or lower extremities. Implanting a peripheral nerve bridge or reinsertion of the avulsed roots in the spinal cord are surgical strategies that lead to some degree of functional recovery. In the current study lentiviral (LV) vector-mediated gene transfer of a green fluorescent protein (GFP) reporter gene was used to study the feasibility of gene therapy in the reimplanted root to further promote regeneration of motor axons. A total of 68 female Wistar rats underwent unilateral root avulsion of the L4, L5 and L6 ventral lumbar roots. From 23 rats intercostal nerves were dissected before ventral root avulsion surgery, injected with a lentiviral vector encoding GFP (LV-GFP) and inserted between the spinal cord and avulsed rootlet. In the remaining 45 rats, the avulsed ventral root was injected with either LV-GFP or a lentiviral vector encoding a fusion between a GlyAla repeat and GFP (LV-GArGFP), and reinserted into the spinal c...
In this review, recent studies using pharmacological treatment, cell transplantation, and gene therapy to promote regeneration of the injured spinal cord in animal models will be summarized. Pharmacological and cell transplantation... more
In this review, recent studies using pharmacological treatment, cell transplantation, and gene therapy to promote regeneration of the injured spinal cord in animal models will be summarized. Pharmacological and cell transplantation treatments generally revealed some degree of effect on the regeneration of the injured ascending and descending tracts, but further improvements to achieve a more significant functional recovery are necessary. The use of gene therapy to promote repair of the injured nervous system is a relatively new concept. It is based on the development of methods for delivering therapeutic genes to neurons, glia cells, or nonneural cells. Direct in vivo gene transfer or gene transfer in combination with (neuro)transplantation (ex vivo gene transfer) appeared powerful strategies to promote neuronal survival and axonal regrowth following traumatic injury to the central nervous system. Recent advances in understanding the cellular and molecular mechanisms that govern neu...
The potential of both stereoisomers of 11 beta-methoxy-17 alpha-[123I] iodovinylestradiol (E- and Z-[123I]MIVE) as suitable radioligands for imaging of estrogen receptor (ER)-positive human breast tumours was studied. The 17... more
The potential of both stereoisomers of 11 beta-methoxy-17 alpha-[123I] iodovinylestradiol (E- and Z-[123I]MIVE) as suitable radioligands for imaging of estrogen receptor (ER)-positive human breast tumours was studied. The 17 alpha-[123I]iodovinylestradiol derivatives were prepared stereospecifically by oxidative radioiododestannylation of the corresponding 17 alpha-tri-n-butylstannylvinylestradiol precursors. Both isomers of MIVE showed high in vitro affinity for dimethylbenzanthracene-induced rat and fresh human mammary tumour ER, that of Z-MIVE however being manyfold higher than that of E-MIVE. In vivo distribution studies with E- and Z-[123I]MIVE in normal and tumour-bearing female rats showed ER-mediated uptake and retention in uterus, ovaries, pituitary, hypothalamus and mammary tumours, again the highest for Z-[123I]MIVE. The uterus- and tumour-to-nontarget tissue (far, muscle) uptake ratios were also highest for Z-[123I]MIVE. Additionally, planar whole body imaging of two bre...
Suprachiasmatic nucleus (SCN)‐lesioned rats which had received a fetal SCN graft were kept in constant red light for three months. After this period it was examined whether those rats that showed a recovered free‐running circadian rhythm... more
Suprachiasmatic nucleus (SCN)‐lesioned rats which had received a fetal SCN graft were kept in constant red light for three months. After this period it was examined whether those rats that showed a recovered free‐running circadian rhythm could be entrained to light/dark cycles. To this end, they were subjected to a 12 h light/12 h dark schedule, followed by a 12

And 172 more