Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Marcel Worring

    The most common and important data visualizations, such as barcharts or scatterplots are typically feature-based. In this paper we question whether feature-based representations are favorable from the cognition point of view. We show... more
    The most common and important data visualizations, such as barcharts or scatterplots are typically feature-based. In this paper we question whether feature-based representations are favorable from the cognition point of view. We show through the examples how the notion of prototypes can be introduced and discuss based on Card's taxonomy how feature- and prototype-based representations amplify cognition.
    Disease classification relying solely on imaging data attracts great interest in medical image analysis. Current models could be further improved, however, by also employing Electronic Health Records (EHRs), which contain rich information... more
    Disease classification relying solely on imaging data attracts great interest in medical image analysis. Current models could be further improved, however, by also employing Electronic Health Records (EHRs), which contain rich information on patients and findings from clinicians. It is challenging to incorporate this information into disease classification due to the high reliance on clinician input in EHRs, limiting the possibility for automated diagnosis. In this paper, we propose variational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays that leverages knowledge from EHRs. Specifically, we introduce a conditional latent variable model, where we infer the latent representation of the X-ray image with the variational posterior conditioning on the associated EHR text. By doing so, the model acquires the ability to extract the visual features relevant to the disease during learning and can therefore perform mo...
    Graphs are the most ubiquitous data structures for representing relational datasets and performing inferences in them. They model, however, only pairwise relations between nodes and are not designed for encoding the higher-order... more
    Graphs are the most ubiquitous data structures for representing relational datasets and performing inferences in them. They model, however, only pairwise relations between nodes and are not designed for encoding the higher-order relations. This drawback is mitigated by hypergraphs, in which an edge can connect an arbitrary number of nodes. Most hypergraph learning approaches convert the hypergraph structure to that of a graph and then deploy existing geometric deep learning methods. This transformation leads to information loss, and sub-optimal exploitation of the hypergraph’s expressive power. We present HyperMSG, a novel hypergraph learning framework that uses a modular two-level neural message passing strategy to accurately and efficiently propagate information within each hyperedge and across the hyperedges. HyperMSG adapts to the data and task by learning an attention weight associated with each node’s degree centrality. Such a mechanism quantifies both local and global importa...
    Geometric deep learning methods such as graph convolutional networks have recently proven to deliver generalized solutions in disease prediction using medical imaging. In this paper, we focus particularly on their use in autism... more
    Geometric deep learning methods such as graph convolutional networks have recently proven to deliver generalized solutions in disease prediction using medical imaging. In this paper, we focus particularly on their use in autism classification. Most of the recent methods use graphs to leverage phenotypic information about subjects (patients or healthy controls) as additional contextual information. To do so, metadata such as age, gender and acquisition sites are utilized to define intricate relations (edges) between the subjects. We alleviate the use of such non-imaging metadata and propose a fully imaging-based approach where information from structural and functional Magnetic Resonance Imaging (MRI) data are fused to construct the edges and nodes of the graph. To characterize each subject, we employ brain summaries. These are 3D images obtained from the 4D spatiotemporal resting-state fMRI data through summarization of the temporal activity of each voxel using neuroscientifically i...
    We introduce a multi-target tracking algorithm that operates on prerecorded video as typically found in post-incident surveillance camera investigation. Apart from being robust to visual challenges such as occlusion and variation in... more
    We introduce a multi-target tracking algorithm that operates on prerecorded video as typically found in post-incident surveillance camera investigation. Apart from being robust to visual challenges such as occlusion and variation in camera view, our algorithm is also robust to temporal challenges, in particular unknown variation in frame rate. The complication with variation in frame rate is that it invalidates motion estimation. As such, tracking algorithms based on motion models will show decreased performance. On the other hand, appearance based detection in individual frames suffers from a plethora of false detections. Our tracking algorithm, albeit relying on appearance based detection, deals robustly with the caveats of both approaches. The solution rests on the fact that for prerecorded video we can make fully informed choices; not only based on preceding, but also based on following frames. We start off from an appearance based object detection algorithm able to detect in ea...
    Increasing scale is a dominant trend in today's multimedia collections, which especially impacts interactive applications. To facilitate interactive exploration of large multimedia collections, new approaches are needed that are... more
    Increasing scale is a dominant trend in today's multimedia collections, which especially impacts interactive applications. To facilitate interactive exploration of large multimedia collections, new approaches are needed that are capable of learning on the fly new analytic categories based on the visual and textual content. To facilitate general use on standard desktops, laptops, and mobile devices, they must furthermore work with limited computing resources. We present Exquisitor, a highly scalable interactive learning approach, capable of intelligent exploration of the large-scale YFCC100M image collection with extremely efficient responses from the interactive classifier. Based on relevance feedback from the user on previously suggested items, Exquisitor uses semantic features, extracted from both visual and text attributes, to suggest relevant media items to the user. Exquisitor builds upon the state of the art in large-scale data representation, compression and indexing, int...
    Vast amounts of artistic data is scattered on-line from both museums and art applications. Collecting, processing and studying it with respect to all accompanying attributes is an expensive process. With a motivation to speed up and... more
    Vast amounts of artistic data is scattered on-line from both museums and art applications. Collecting, processing and studying it with respect to all accompanying attributes is an expensive process. With a motivation to speed up and improve the quality of categorical analysis in the artistic domain, in this paper we propose an efficient and accurate method for multi-task learning with a shared representation applied in the artistic domain. We continue to show how different multi-task configurations of our method behave on artistic data and outperform handcrafted feature approaches as well as convolutional neural networks. In addition to the method and analysis, we propose a challenge like nature to the new aggregated data set with almost half a million samples and structured meta-data to encourage further research and societal engagement.
    Deep neural networks have been playing an essential role in the task of Visual Question Answering (VQA). Until recently, their accuracy has been the main focus of research. Now there is a trend toward assessing the robustness of these... more
    Deep neural networks have been playing an essential role in the task of Visual Question Answering (VQA). Until recently, their accuracy has been the main focus of research. Now there is a trend toward assessing the robustness of these models against adversarial attacks by evaluating the accuracy of these models under increasing levels of noisiness in the inputs of VQA models. In VQA, the attack can target the image and/or the proposed query question, dubbed main question, and yet there is a lack of proper analysis of this aspect of VQA. In this work, we propose a new method that uses semantically related questions, dubbed basic questions, acting as noise to evaluate the robustness of VQA models. We hypothesize that as the similarity of a basic question to the main question decreases, the level of noise increases. To generate a reasonable noise level for a given main question, we rank a pool of basic questions based on their similarity with this main question. We cast this ranking pr...
    Members of communities often share topics of interest. However, usually not all members are interested in all topics, and participation in topics changes over time. Prediction models based on temporal hypergraphs that—in contrast to... more
    Members of communities often share topics of interest. However, usually not all members are interested in all topics, and participation in topics changes over time. Prediction models based on temporal hypergraphs that—in contrast to state-of-the-art models—exploit group structures in the communication network can be used to an- ticipate changes of interests. In practice, there is a need to assess these models in detail. While loss functions used in the training process can provide initial cues on the model’s global quality, local quality can be investigated with visual analytics. In this paper, we present a visual analytics framework for the assessment of temporal hypergraph prediction models. We introduce its core components: a sliding window approach to prediction and an interactive visualization for partially fuzzy temporal hypergraphs.

    And 394 more