Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Neus Garcia

We sought to compare a 2-day quadruple therapy with a 14-day triple therapy in the treatment of Helicobacter pylori infection. Eighty-one consecutive patients with an endoscopically diagnosed peptic ulcer and demonstrated infection by H.... more
We sought to compare a 2-day quadruple therapy with a 14-day triple therapy in the treatment of Helicobacter pylori infection. Eighty-one consecutive patients with an endoscopically diagnosed peptic ulcer and demonstrated infection by H. pylori were included in the study. Patients were randomized to receive omeprazole 40 mg b.i.d., amoxicillin 2.5 g once daily, metronidazole 500 mg t.i.d., and bismuth subcitrate 360 mg t.i.d. for 2 days, followed by omeprazole 20 mg once daily for 6 additional days (Group 1) or a 14-day course of omeprazole 20 mg b.i.d., amoxicillin 1 g t.i.d., and metronidazole 500 mg t.i.d. (Group 2). Eradication was evaluated by antral biopsy and rapid urease test at 2 months after therapy and by C13-urea breath test after a year. Two patients were lost to follow-up at 2 months. Intention-to-treat analysis showed that H. pylori infection was cured in 29 of 42 patients (69%; 95% CI: 53-82%) in Group 1 versus 36 of 39 (92%; 95% CI: 78-98%) of patients in Group 2 (p = 0.009). Per-protocol analysis showed a cure rate of 71% (95% CI: 55-84%) (29/41 patients) and 95% (95% CI: 81-99%) (36/38 patients), respectively (p = 0.007). Fifty-five of 65 cured patients returned 1 year after treatment (26 in Group 1, 29 in Group 2). All but one in Group 2 remained cured. There were no significant differences in compliance (88% in Group 1 versus 92% in Group 2) or in the presence of side effects (27%; 95% CI: 15-43% versus 41%; 95% CI: 26-58%; ns). Two-day quadruple therapy is significantly less effective than 2-wk triple treatment.
To test the usefulness of a twice-a-day, simplified quadruple therapy to cure Helicobacter pylori infection. Helicobacter pylori-positive ulcer patients were treated with omeprazole 20 mg twice a day (b.d.), amoxicillin 1 g b.d.,... more
To test the usefulness of a twice-a-day, simplified quadruple therapy to cure Helicobacter pylori infection. Helicobacter pylori-positive ulcer patients were treated with omeprazole 20 mg twice a day (b.d.), amoxicillin 1 g b.d., tinidazole 500 mg b.d. and bismuth subcitrate 240 mg b.d. for 7 days in an experimental, noncomparative pilot study. The gastroenterology unit of a county hospital. Forty-four consecutive patients with peptic ulcer disease and H. pylori infection. Cure was tested by either endoscopy or breath test after 2 months, and by urea breath test 6 months after therapy. One patient was lost to follow-up. Of the remaining 43, 37 were cured at the first control, giving an intention-to-treat cure rate of 84.1% (95% CI 69-93%) and a per protocol cure rate of 86% (95% CI 71-94%). Thirty-three cured patients agreed to return for a six-month breath test. All but one were cured (long-term per protocol cure rate 82.1%; 95% CI 66-92%). This particular quadruple therapy is well tolerated and easy to comply with. However, cure rates did not reach 90%.
Neurotrophins and their receptors, the trk receptor tyrosine kinases (trks) and p75NTR, are differentially expressed among the cell types that make up synapses. It is important to determine the precise location of these molecules involved... more
Neurotrophins and their receptors, the trk receptor tyrosine kinases (trks) and p75NTR, are differentially expressed among the cell types that make up synapses. It is important to determine the precise location of these molecules involved in neurotransmission. Here we use immunostaining and Western blotting to study the localization and expression of neurotrophin brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4) and the receptors tropomyosin-related kinase b (trkB) and p75NTR at the adult neuromuscular junction. Our confocal immunofluorescence results on the whole mounts of the mouse Levator auris longus muscle and on semithin cross-sections showed that BDNF, NT-4, trkB, and p75NTR were localized on the three cells in the neuromuscular synapse (motor axons, post-synaptic muscle and Schwann cells).
Protein kinase C (PKC) is essential for signal transduction in a variety of cells, including neurons and myocytes, and is involved in both acetylcholine release and muscle fiber contraction. Here, we demonstrate that the increases in... more
Protein kinase C (PKC) is essential for signal transduction in a variety of cells, including neurons and myocytes, and is involved in both acetylcholine release and muscle fiber contraction. Here, we demonstrate that the increases in synaptic activity by nerve stimulation couple PKC to transmitter release in the rat neuromuscular junction and increase the level of α, βI, and βII isoforms in the membrane when muscle contraction follows the stimulation. The phosphorylation activity of these classical PKCs also increases. It seems that the muscle has to contract in order to maintain or increase classical PKCs in the membrane. We use immunohistochemistry to show that PKCα and PKCβI were located in the nerve terminals, whereas PKCα and PKCβII were located in the postsynaptic and the Schwann cells. Stimulation and contraction do not change these cellular distributions, but our results show that the localization of classical PKC isoforms in the membrane is affected by synaptic activity. J. Comp. Neurol. 518:211–228, 2010. © 2009 Wiley-Liss, Inc.
We use immunocytochemistry to show that neurotrophin-4 (NT-4) and its receptor proteins (p75(NTR) and tropomyosin-related tyrosine kinase B) are present in neonatal neuromuscular junctions (NMJ) colocalized with several synaptic markers.... more
We use immunocytochemistry to show that neurotrophin-4 (NT-4) and its receptor proteins (p75(NTR) and tropomyosin-related tyrosine kinase B) are present in neonatal neuromuscular junctions (NMJ) colocalized with several synaptic markers. NT-4 incubation (1h, in the range 2-12 nM) does not change the size of the endplate potential between P6 and P45. However, extended exposure (3h) to a relatively low dose of NT-4 (2 nM) potentiates ACh release (approx. 70%) in adult but not in neonatal muscles. The present results suggest that the developmental mechanism of axonal competition and neonatal elimination of redundant synapses cannot be modulated by added NT-4. However, this neurotrophin was able to modulate synaptic transmission locally in the adult NMJ.
Using intracellular recording, we studied how protein kinase C activity affected miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) in the neuromuscular junctions of the levator auris longus muscle from adult... more
Using intracellular recording, we studied how protein kinase C activity affected miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) in the neuromuscular junctions of the levator auris longus muscle from adult rats. The protein kinase C activator phorbol 12-myristate 13-acetate (PMA, 10 nM) increased the quantal content by ∼150% (P < 0.05). On the other hand, the quantal content decreased by ∼40% (P < 0.05) for all the protein kinase C inhibitors tested (Calphostin-C, 10 μM; Chelerythrine, 1 μM; Staurosporine, 200 nM). These changes in acetylcholine release were maintained at plateau for 1 to 7 h. Moreover, none of the protein kinase C activators or inhibitors used could modify the spontaneous MEPP mean size (P > 0.05). We reduced the calcium influx in nerve terminals using the P/Q-type channel blocker ω-Aga-IVA(100 nM) or with 5 mM magnesium in physiological solution. In neither situation was the quantal content modified by PMA or by CaC. However, when high Ca2+ (5 mM) was added to a preparation that was previously blocked with ω-Aga-IVA, PMA and CaC had their full effect. We conclude that under physiological conditions PKC is dependent on the calcium inflow through the P/Q-type voltage-dependent calcium channels during evoked activity and works near the maximum rate at normal external calcium concentration. Synapse 57:76–84, 2005. © 2005 Wiley-Liss, Inc.
In this study, we used a monoclonal IgM antibody from a patient with a pure motor chronic demyelinating polyneuropathy, which binds specifically to the complex gangliosides GM2, GalNAc-GD1a, and GalNAc-GM1b, which appear to have a common... more
In this study, we used a monoclonal IgM antibody from a patient with a pure motor chronic demyelinating polyneuropathy, which binds specifically to the complex gangliosides GM2, GalNAc-GD1a, and GalNAc-GM1b, which appear to have a common epitope of -[GalNAcβ1-4Gal(3-2αNeuAc)β1]. This was done for the following reasons: (1) to localize these gangliosides in specific cellular components of the neuromuscular junction (NMJ), and (2) to describe the anti–ganglioside antibody–induced structural and functional changes in the NMJs to gain insight into the role of gangliosides in the synaptic function. Using immunofluorescence techniques, we found that these gangliosides are located only in the presynaptic component of the motor end-plates, both in nerve terminals and in Schwann cells. After 2 weeks of continued passive transfer of the IgM monoclonal antibody over the mouse levator auris longus muscle, electromyography showed an axonal or NMJ disorder. Morphology showed important nerve terminal growth and retraction changes. Using intracellular recording electrophysiology, we found neurotransmitter release alterations, including quantal content reduction and an immature expression of voltage-dependent calcium channels similar to what occurred during NMJ development and regeneration. These changes were complement independent. The results showed that these gangliosides were involved in the reciprocal Schwann cell–nerve terminal interactions, including structural stability and neurotransmission. Ann Neurol 2005;57:396–407
A role for thrombin and its receptor (ThR) during mammalian skeletal muscle cell differentiation and neuromuscular junction (NMJ) formation has been suggested. Previously, we found that the synapse elimination process in the neonatal rat... more
A role for thrombin and its receptor (ThR) during mammalian skeletal muscle cell differentiation and neuromuscular junction (NMJ) formation has been suggested. Previously, we found that the synapse elimination process in the neonatal rat muscle was accelerated by thrombin and blocked by hirudin, its specific inhibitor (Lanuza et al. [2001] J. Neurosci. Res. 63:330–340). To test whether this process resulted from a signal transduction cascade initiated by activation of ThR, in particular PAR-1, we applied to the levator auris longus (LAL) muscle of newborn rats two synthetic peptides (SFLL and FSLL). SFLL is a potent specific agonist for activation of PAR-1, whereas FSLL is an inactive peptide. We have demonstrated that the activation of PAR-1 by SFLL produced acceleration of the presynaptic loss of connections and the postsynaptic maturation of NMJs. Moreover, Western blot analysis showed that PAR-1 was present in the skeletal muscle, and by immunohistochemistry we detected PAR-1 in muscle fibers concentrated in the synaptic area but also in satellite cells. Several lines of evidence suggested that PAR-1 is localized in the postsynaptic membrane: PAR-1 immunofluorescence was concentrated at denervated synaptic sites and was present in the myotube membrane in vitro in the absence of neurons and in dissociated single muscle fibers from which nerve terminals and Schwann cells had been removed. Taken together, these results indicate that thrombin mediates certain stages of activity-dependent synapse elimination in the skeletal muscle and does so through its action on the thrombin receptor PAR-1 localized, at least in part, on the postsynaptic membrane. © 2003 Wiley-Liss, Inc.
Confocal immunohistochemistry shows that neurotrophin-3 (NT-3) and its receptor tropomyosin-related tyrosin kinase C (trkC) are present in both neonatal (P6) and adult (P45) mouse motor nerve terminals in neuromuscular junctions (NMJ)... more
Confocal immunohistochemistry shows that neurotrophin-3 (NT-3) and its receptor tropomyosin-related tyrosin kinase C (trkC) are present in both neonatal (P6) and adult (P45) mouse motor nerve terminals in neuromuscular junctions (NMJ) colocalized with several synaptic proteins. NT-3 incubation (1-3h, in the range 10-200ng/ml) does not change the size of the evoked and spontaneous endplate potentials at P45. However, NT-3 (1h, 100ng/ml) strongly potentiates evoked ACh release from the weak (70%) and the strong (50%) axonal inputs on dually innervated postnatal endplates (P6) but not in the most developed postnatal singly innervated synapses at P6. The present results indicate that NT-3 has a role in the developmental mechanism that eliminates redundant synapses though it cannot modulate synaptic transmission locally as the NMJ matures.
We studied the relation among calcium inflows, voltage-dependent calcium channels (VDCC), presynaptic muscarinic acetylcholine receptors (mAChRs), and protein kinase C (PKC) activity in the modulation of synapse elimination. We used... more
We studied the relation among calcium inflows, voltage-dependent calcium channels (VDCC), presynaptic muscarinic acetylcholine receptors (mAChRs), and protein kinase C (PKC) activity in the modulation of synapse elimination. We used intracellular recording to determine the synaptic efficacy in dually innervated endplates of the levator auris longus muscle of newborn rats during axonal competition in the postnatal synaptic elimination period. In these dual junctions, the weak nerve terminal was potentiated by partially reducing calcium entry (P/Q-, N-, or L-type VDCC-specific block or 500 μM magnesium ions), M1- or M4-type selective mAChR block, or PKC block. Moreover, reducing calcium entry or blocking PKC or mAChRs results in unmasking functionally silent nerve endings that now recover neurotransmitter release. Our results show interactions between these molecules and indicate that there is a release inhibition mechanism based on an mAChR-PKC-VDCC intracellular cascade. When it is fully active in certain weak motor axons, it can depress ACh release and even disconnect synapses. We suggest that this mechanism plays a central role in the elimination of redundant neonatal synapses, because functional axonal withdrawal can indeed be reversed by mAChRs, VDCCs, or PKC block. © 2008 Wiley-Liss, Inc.
Individual skeletal muscle fibers in most new-born rodents are innervated at a single endplate by several motor axons. During the first postnatal weeks, the polyneuronal innervation decreases in a process of synaptic elimination. Previous... more
Individual skeletal muscle fibers in most new-born rodents are innervated at a single endplate by several motor axons. During the first postnatal weeks, the polyneuronal innervation decreases in a process of synaptic elimination. Previous studies showed that the naturally occurring serine-protease thrombin mediates the activity-dependent synapse reduction at the neuromuscular junction (NMJ) in vitro and that thrombin-receptor activation may modulate nerve terminal consolidation through a protein kinase mechanism. To test whether these mechanisms may be operating in vivo, we applied external thrombin and its inhibitor hirudin, and several substances affecting the G protein-protein kinase C system (GP-PKC) directly over the external surface of the neonatal rat Levator auris longus muscle. Muscles were processed for immunocytochemistry to simultaneously detect acetylcholine receptors (AChRs) and axons for counting the percentage of polyinnervated NMJ. We found that exogenous thrombin accelerated synapse loss and hirudin blocked axonal removal. Phorbol-12-myristate-13-acetate, a potent PKC activator, had a similar effect as thrombin, whereas the PKC inhibitors, calphostin C and staurosporine, prevented axonal removal. Pertussis toxin, an effective blocker of GP function, blocked synapse elimination. These findings suggest that the normal synapse elimination in the neonatal rat muscle may be modulated, at least in part, by the pertussis-sensitive G-protein and PKC activity and that thrombin could play a role in the postnatal synaptic maturation in vivo.
In the neuromuscular junction (NMJ), three cellular elements (nerve ending, postsynaptic muscle component, and teloglial Schwann cell) are closely juxtaposed and functionally interdependent. It is important to determine the precise... more
In the neuromuscular junction (NMJ), three cellular elements (nerve ending, postsynaptic muscle component, and teloglial Schwann cell) are closely juxtaposed and functionally interdependent. It is important to determine the precise location of the relevant molecules involved in structural stability and neurotransmission at the three cellular components of this synapse in order to understand the molecular mechanisms underlying NMJ formation, maintenance, and functionality. In this paper, we show that plastic-embedded 0.5-μm semithin cross-sections from whole-mount multiple-immunofluorescence-stained muscles provide a simple and sensitive high-resolution procedure for analyzing the cellular and subcellular distribution of molecules at the NMJ. We have used this procedure to resolve the location of protease-activated receptor 1 (PAR-1). Previously, by immunohistochemistry we had detected PAR-1 in muscle fibers concentrated in the synaptic area but could not determine whether PAR-1 is expressed only in the muscle fiber at the NMJ. Our present results demonstrate that PAR-1 is concentrated in the postsynaptic region but not in the presynaptic terminal and that the labelling pattern for PAR-1 overlapped with Schwann cell staining. © 2007 Wiley-Liss, Inc.
The distribution of acetylcholine receptors (AChRs) within and around the neuromuscular junction changes dramatically during the first postnatal weeks, a period during which polyneuronal innervation is eliminated. We reported previously... more
The distribution of acetylcholine receptors (AChRs) within and around the neuromuscular junction changes dramatically during the first postnatal weeks, a period during which polyneuronal innervation is eliminated. We reported previously that protein kinase C (PKC) activation accelerates postnatal synapse loss. Because of the close relationship between axonal retraction and AChR cluster dispersal, we hypothesize that PKC can modulate morphological maturation changes of the AChR clusters in the postsynaptic membrane during neonatal axonal reduction. We applied substances affecting PKC activity to the neonatal rat levator auris longus muscle in vivo. Muscles were then stained immunohistochemically to detect both AChRs and axons. We found that, during the first postnatal days of normal development, substantial axonal loss preceded the formation of areas in synaptic sites that were free of AChRs, implying that axonal loss could occur independently of changes in AChR cluster organization. Nevertheless, there was a close relationship between axonal loss and AChR organization; PKC modulates both, although differently. Block of PKC activity with calphostin C prevented both AChR loss and axonal loss between postnatal days 4 and 6. PKC may act primarily to influence AChR clusters and not axons, insofar as phorbol ester activation of PKC accelerated changes in receptor aggregates but produced relatively little axon loss. © 2002 Wiley-Liss, Inc.
We use immunohistochemistry to describe the localization of brain-derived neurotrophic factor (BDNF) and its receptors trkB and p75NTR in the neuromuscular synapses of postnatal rats (P6–P7) during the synapse elimination period. The... more
We use immunohistochemistry to describe the localization of brain-derived neurotrophic factor (BDNF) and its receptors trkB and p75NTR in the neuromuscular synapses of postnatal rats (P6–P7) during the synapse elimination period. The receptor protein p75NTR is present in the nerve terminal, muscle cell and glial Schwann cell whereas BDNF and trkB proteins can be detected mainly in the pre- and postsynaptic elements. Exogenously applied BDNF (10 nM for 3 hr or 50 nM for 1 hr) increases ACh release from singly and dually innervated synapses. This effect may be specific for BDNF because the neurotrophin NT-4 (2–8 nM) does not modulate release at P6–P7. Blocking the receptors trkB and p75NTR (with K-252a and anti-p75-192-IgG, respectively) completely abolishes the potentiating effect of exogenous BDNF. In addition, exogenous BDNF transiently recruits functionally depressed silent terminals, and this effect seems to be mediated by trkB. Calcium ions, the L-type voltage-dependent calcium channels and protein kinase C are involved in BDNF-mediated nerve ending recruitment. Blocking experiments suggest that endogenous BDNF could operate through p75NTR receptors coupled to potentiate ACh release in all nerve terminals because the anti-p75-192-IgG reduces release. However, blocking the trkB receptor (K-252a) or neutralizing endogenous BDNF with the trkB-IgG fusion protein reveals a trkB-mediated release inhibition on almost mature strong endings in dual junctions. Taken together these results suggest that a BDNF-induced p75NTR-mediated ACh release potentiating mechanism and a BDNF-induced trkB-mediated release inhibitory mechanism may contribute to developmental synapse disconnection. © 2009 Wiley-Liss, Inc.
We have used intracellular recording to investigate the existence of a functional link between muscarinic presynaptic acetylcholine (ACh) autoreceptors, the intracellular serine-threonine kinases-mediated transduction pathways and... more
We have used intracellular recording to investigate the existence of a functional link between muscarinic presynaptic acetylcholine (ACh) autoreceptors, the intracellular serine-threonine kinases-mediated transduction pathways and transmitter release in the motor nerve terminals of adult rats. We found the following. (1) Transmitter release was reduced by the M1 muscarinic acetylcholine receptor (mAChR) blocker pirenzepine and enhanced by the M2 blocker methoctramine. The unselective mAChR blocker atropine increased ACh release, which suggests the unmasking of another parallel release-potentiating mechanism. There are therefore two opposite, though finely balanced, M1–M2 mAChR-operated mechanisms that tonically modulate transmitter release. (2) Both M1 and M2 mechanisms were altered when protein kinase C (PKC), protein kinase A (PKA) or the P/Q-type calcium channel were blocked. (3) Both PKC and PKA potentiated release when they were specifically stimulated [with phorbol 12-myristate 13-actetate (PMA) and Sp-8-Br cAMPs, respectively], and both needed the P/Q channel. (4) In normal conditions PKC seemed not to be directly involved in transmitter release (the PKC blocker calphostin C did not reduce release), whereas PKA was coupled to potentiate release (the PKA blocker H-89 reduced release). However, when an imbalance of the M1–M2 mAChRs function was experimentally produced with selective blockers, an inversion of the kinase function occurred and PKC could then stimulate transmitter release, whereas PKA was uncoupled. (5) The muscarinic function may be explained by the existence of an M1-mediated increased PKC activity-dependent potentiation of release and an M2-mediated PKA decreased activity-dependent release reduction.These findings show that there is a precise interrelation pattern of the mAChRs, PKC and PKA in the control of the neurotransmitter release.
By using intracellular recording, we studied how protein kinase C (PKC) activity affected transmitter release in singly and dually innervated endplates of the Levator auris longus muscle of 5–6-day-old rats during axonal competition in... more
By using intracellular recording, we studied how protein kinase C (PKC) activity affected transmitter release in singly and dually innervated endplates of the Levator auris longus muscle of 5–6-day-old rats during axonal competition in the postnatal synaptic elimination period. In dually innervated fibers, a second endplate potential (EPP) may appear after the first one when the stimulation intensity is increased. The nerve terminals that generate the lowest and the highest EPP amplitudes are designated “small-EPP generating ending” (SEGE) and “large-EPP generating ending” (LEGE), respectively. Blocking PKC with calphostin C, staurosporine, or chelerythrine results in an increased release from SEGE (∼80%), whereas release from LEGE and from endings generating only one EPP (OEGE) is not significantly affected. Blocking PKC also leads to the recruitment of silent synapses (acetylcholine cannot be released before PKC inhibition). The mean number of functional axon terminals per synapse increases by ∼47%, and these are now designated the “recruited-EPP generating endings” (REGE). This suggests that axonal PKC can modulate postnatal synaptic elimination by favoring the nerve terminal disconnection of certain weak axonal endings (REGE and SEGE). We conclude that a PKC-mediated mechanism should occupy a pivotal place in neonatal synapse elimination, because functional axonal withdrawal can indeed be turned back by PKC block. © 2007 Wiley-Liss, Inc.