Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Ramneet Kaur

As machine learning models continue to achieve impressive performance across different tasks, the importance of effective anomaly detection for such models has increased as well. It is common knowledge that even well-trained models lose... more
As machine learning models continue to achieve impressive performance across different tasks, the importance of effective anomaly detection for such models has increased as well. It is common knowledge that even well-trained models lose their ability to function effectively on out-of-distribution inputs. Thus, out-of-distribution (OOD) detection has received some attention recently. In the vast majority of cases, it uses the distribution estimated by the training dataset for OOD detection. We demonstrate that the current detectors inherit the biases in the training dataset, unfortunately. This is a serious impediment, and can potentially restrict the utility of the trained model. This can render the current OOD detectors impermeable to inputs lying outside the training distribution but with the same semantic information (e.g. training class labels). To remedy this situation, we begin by defining what should ideally be treated as an OOD, by connecting inputs with their semantic information content. We perform OOD detection on semantic information extracted from the training data of MNIST and COCO datasets and show that it not only reduces false alarms but also significantly improves the detection of OOD inputs with spurious features from the training data.
The use of learning based components in cyber-physical systems (CPS) has created a gamut of possible avenues to use high dimensional real world signals generated from sensors like camera and LiDAR. The ability to process such signals can... more
The use of learning based components in cyber-physical systems (CPS) has created a gamut of possible avenues to use high dimensional real world signals generated from sensors like camera and LiDAR. The ability to process such signals can be largely attributed to the adoption of high-capacity function approximators like deep neural networks. However, this does not come without its potential perils. The pitfalls arise from possible over-fitting, and subsequent unsafe behavior when exposed to unknown environments. One challenge is that, in high dimensional input spaces it is almost impossible to experience enough training data in the design phase. What is required here, is an efficient way to flag out-of-distribution (OOD) samples that is precise enough to not raise too many false alarms. In addition, the system needs to be able to detect these in a computationally efficient manner at runtime. In this paper, our proposal is to build good representations for in-distribution data. We introduce the idea of a memory bank to store prototypical samples from the input space. We use these memories to compute probability density estimates using kernel density estimation techniques. We evaluate our technique on two challenging scenarios : a self-driving car setting implemented inside the simulator CARLA with image inputs, and an autonomous racing car navigation setting, with LiDAR inputs. In both settings, it was observed that a deviation from in-distribution setting can potentially lead to deviation from safe behavior. An added benefit of using training samples as memories to detect out-of-distribution inputs is that the system is interpretable to a human operator. Explanation of this nature is generally hard to obtain from pure deep learning based alternatives. Our code for reproducing the experiments is available at https:// github.com/ yangy96/ interpretable_ood_detection.git
Runtime verification of parametric properties using SMEDL Runtime verification of parametric properties using SMEDL
The use of learning based components in cyber-physical systems (CPS) has created a gamut of possible avenues to use high dimensional real world signals generated from sensors like camera and LiDAR. The ability to process such signals can... more
The use of learning based components in cyber-physical systems (CPS) has created a gamut of possible avenues to use high dimensional real world signals generated from sensors like camera and LiDAR. The ability to process such signals can be largely attributed to the adoption of high-capacity function approximators like deep neural networks. However, this does not come without its potential perils. The pitfalls arise from possible over-fitting, and subsequent unsafe behavior when exposed to unknown environments. One challenge is that, in high dimensional input spaces it is almost impossible to experience enough training data in the design phase. What is required here, is an efficient way to flag out-of-distribution (OOD) samples that is precise enough to not raise too many false alarms. In addition, the system needs to be able to detect these in a computationally efficient manner at runtime. In this paper, our proposal is to build good representations for in-distribution data. We introduce the idea of a memory bank to store prototypical samples from the input space. We use these memories to compute probability density estimates using kernel density estimation techniques. We evaluate our technique on two challenging scenarios : a self-driving car setting implemented inside the simulator CARLA with image inputs, and an autonomous racing car navigation setting, with LiDAR inputs. In both settings, it was observed that a deviation from in-distribution setting can potentially lead to deviation from safe behavior. An added benefit of using training samples as memories to detect out-of-distribution inputs is that the system is interpretable to a human operator. Explanation of this nature is generally hard to obtain from pure deep learning based alternatives. Our code for reproducing the experiments is available at https:// github.com/ yangy96/ interpretable_ood_detection.git
Uncertainty in the predictions of learning enabled components hinders their deployment in safety-critical cyber-physical systems (CPS). A shift from the training distribution of a learning enabled component (LEC) is one source of... more
Uncertainty in the predictions of learning enabled components hinders their deployment in safety-critical cyber-physical systems (CPS). A shift from the training distribution of a learning enabled component (LEC) is one source of uncertainty in the LEC's predictions. Detection of this shift or out-of-distribution (OOD) detection on individual datapoints has therefore gained attention recently. But in many applications, inputs to CPS form a temporal sequence. Existing techniques for OOD detection in time-series data for CPS either do not exploit temporal relationships in the sequence or do not provide any guarantees on detection. We propose using deviation from the in-distribution temporal equivariance as the non-conformity measure in conformal anomaly detection framework for OOD detection in time-series data for CPS. Computing independent predictions from multiple conformal detectors based on the proposed measure and combining these predictions by Fisher's method leads to the proposed detector CODiT with bounded false alarms. We illustrate the efficacy of CODiT by achieving state-of-the-art results in autonomous driving systems with perception (or vision) LEC. We also perform experiments on medical CPS for GAIT analysis where physiological (nonvision) data is collected with force-sensitive resistors attached to the subject's body. Code, data, and trained models are available at https:// github.com/ kaustubhsridhar/ time-series-OOD
Industrial cyber-physical systems are hybrid systems with strict safety requirements. Despite not having a formal semantics, most of these systems are modeled using Stateflow/Simulink for mainly two reasons: (1) it is easier to model,... more
Industrial cyber-physical systems are hybrid systems with strict safety requirements. Despite not having a formal semantics, most of these systems are modeled using Stateflow/Simulink for mainly two reasons: (1) it is easier to model, test, and simulate using these tools, and (2) dynamics of these systems are not supported by most other tools. Furthermore, with the ever growing complexity of cyber-physical systems, grows the gap between what can be modeled using an automatic formal verification tool and models of industrial cyber-physical systems. In this paper, we present a simple formal model for self-deriving cars. While after some simplification, safety of this system has already been proven manually, to the best of our knowledge, no automatic formal verification tool supports its dynamics. We hope this serves as a challenge problem for formal verification tools targeting industrial applications.
With the increasing use of deep neural networks (DNNs) in the safety-critical cyber-physical systems (CPS), such as autonomous vehicles, providing guarantees about the safety properties of these systems becomes ever more important. Tools... more
With the increasing use of deep neural networks (DNNs) in the safety-critical cyber-physical systems (CPS), such as autonomous vehicles, providing guarantees about the safety properties of these systems becomes ever more important. Tools for reasoning about the safety of DNN-based systems have started to emerge. In this paper, we show that assurance cases can be used to argue about the safety of CPS with DNNs by proposing assurance case patterns that are amenable to the existing evidence generation tools for these systems. We use case studies of two different autonomous driving scenarios to illustrate the use of the proposed patterns for the construction of these assurance cases.
Deep neural networks (DNNs) are known to produce incorrect predictions with very high confidence on out-of-distribution (OOD) inputs. This limitation is one of the key challenges in the adoption of deep learning models in high-assurance... more
Deep neural networks (DNNs) are known to produce incorrect predictions with very high confidence on out-of-distribution (OOD) inputs. This limitation is one of the key challenges in the adoption of deep learning models in high-assurance systems such as autonomous driving, air traffic management, and medical diagnosis. This challenge has received significant attention recently, and several techniques have been developed to detect inputs where the model’s prediction cannot be trusted. These techniques use different statistical, geometric, or topological signatures. This paper presents a taxonomy of OOD outlier inputs based on their source and nature of uncertainty. We demonstrate how different existing detection approaches fail to detect certain types of outliers. We utilize these insights to develop a novel integrated detection approach that uses multiple attributes corresponding to different types of outliers. Our results include experiments on CIFAR10, SVHN and MNIST as in-distribu...
Deep neural networks (DNNs) are known to produce incorrect predictions with very high confidence on out-of-distribution inputs (OODs). This limitation is one of the key challenges in the adoption of DNNs in high-assurance systems such as... more
Deep neural networks (DNNs) are known to produce incorrect predictions with very high confidence on out-of-distribution inputs (OODs). This limitation is one of the key challenges in the adoption of DNNs in high-assurance systems such as autonomous driving, air traffic management, and medical diagnosis. This challenge has received significant attention recently, and several techniques have been developed to detect inputs where the model’s prediction cannot be trusted. These techniques detect OODs as datapoints with either high epistemic uncertainty or high aleatoric uncertainty. We demonstrate the difference in the detection ability of these techniques and propose an ensemble approach for detection of OODs as datapoints with high uncertainty (epistemic or aleatoric). We perform experiments on vision datasets with multiple DNN architectures, achieving state-of-the-art results in most cases.
Machine learning methods such as deep neural networks (DNNs), despite their success across different domains, are known to often generate incorrect predictions with high confidence on inputs outside their training distribution. The... more
Machine learning methods such as deep neural networks (DNNs), despite their success across different domains, are known to often generate incorrect predictions with high confidence on inputs outside their training distribution. The deployment of DNNs in safety-critical domains requires detection of out-of-distribution (OOD) data so that DNNs can abstain from making predictions on those. A number of methods have been recently developed for OOD detection, but there is still room for improvement. We propose the new method iDECODe, leveraging in-distribution equivariance for conformal OOD detection. It relies on a novel base non-conformity measure and a new aggregation method, used in the inductive conformal anomaly detection framework, thereby guaranteeing a bounded false detection rate. We demonstrate the efficacy of iDECODe by experiments on image and audio datasets, obtaining state-of-the-art results. We also show that iDECODe can detect adversarial examples.
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) technologies (together, V2X) will enable vehicles, ranging from cars to trucks to buses to pedestrians to wirelessly exchange important safety and congestion information. This... more
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) technologies (together, V2X) will enable vehicles, ranging from cars to trucks to buses to pedestrians to wirelessly exchange important safety and congestion information. This exchange is expected to help save lives, prevent injuries and ease traffic congestion. The realization of this promise however critically depends on the deployment of judicious wireless and vehicular control strategies (e.g., how vehicular routing choices respond to V2X messages, how wireless network schedules these messages, how traffic signals may be controlled to optimize their spread) that exploit the opportunities and stymie the obstacles that the interdependence between the wireless and transportation infrastructures introduce. To that end, one needs mechanisms to model, evaluate and control V2X, which is what we seek to obtain, by proposing deployment of formal methods in the field of V2X. Specifically, we show how a V2X system can be formally verified to assess reachability to undesirable states by modeling it as a hybrid system and then verifying the safety properties for this hybrid system via reachability.
As machine learning models continue to achieve impressive performance across different tasks, the importance of effective anomaly detection for such models has increased as well. It is common knowledge that even well-trained models lose... more
As machine learning models continue to achieve impressive performance across different tasks, the importance of effective anomaly detection for such models has increased as well. It is common knowledge that even well-trained models lose their ability to function effectively on out-of-distribution inputs. Thus, out-of-distribution (OOD) detection has received some attention recently. In the vast majority of cases, it uses the distribution estimated by the training dataset for OOD detection. We demonstrate that the current detectors inherit the biases in the training dataset, unfortunately. This is a serious impediment, and can potentially restrict the utility of the trained model. This can render the current OOD detectors impermeable to inputs lying outside the training distribution but with the same semantic information (e.g. training class labels). To remedy this situation, we begin by defining what should ideally be treated as an OOD, by connecting inputs with their semantic information content. We perform OOD detection on semantic information extracted from the training data of MNIST and COCO datasets and show that it not only reduces false alarms but also significantly improves the detection of OOD inputs with spurious features from the training data.
Research Interests:
Adversarial training (AT) and its variants have spearheaded progress in improving neural network robustness to adversarial perturbations and common corruptions in the last few years. Algorithm design of AT and its variants are focused on... more
Adversarial training (AT) and its variants have spearheaded progress in improving neural network robustness to adversarial perturbations and common corruptions in the last few years. Algorithm design of AT and its variants are focused on training models at a specified perturbation strength and only using the feedback from the performance of that-robust model to improve the algorithm. In this work, we focus on models, trained on a spectrum of values. We analyze three perspectives: model performance, intermediate feature precision and convolution filter sensitivity. In each, we identify alternative improvements to AT that otherwise wouldn't have been apparent at a single. Specifically, we find that for a PGD attack at some strength δ, there is an AT model at some slightly larger strength , but no greater, that generalizes best to it. Hence, we propose overdesigning for robustness where we suggest training models at an just above δ. Second, we observe (across various values) that robustness is highly sensitive to the precision of intermediate features and particularly those after the first and second layer. Thus, we propose adding a simple quantization to defenses that improves accuracy on seen and unseen adaptive attacks. Third, we analyze convolution filters of each layer of models at increasing and notice that those of the first and second layer may be solely responsible for amplifying input perturbations. We present our findings and demonstrate our techniques through experiments with ResNet and WideResNet models on the CIFAR-10 and CIFAR-10-C datasets. 1
Research Interests: