Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Sylvie Bertholet

    In mice, the high inducible synthesis of nitric oxide (NO) resulting from inducible NO synthase (iNOS, NOS2) expression by macrophages (Mphi) is considered an essential component of the protective immune response against infection by... more
    In mice, the high inducible synthesis of nitric oxide (NO) resulting from inducible NO synthase (iNOS, NOS2) expression by macrophages (Mphi) is considered an essential component of the protective immune response against infection by intracellular pathogens. Conversely, in humans, the question of a role for NO as an antimicrobial defense mechanism has been the subject of much debate. Recently, however, iNOS expression by human Mphi and formation of NO or its derivatives have been reported both in vivo and in vitro, strongly suggesting that human Mphi are indeed capable of inducible NO synthesis. However, the conditions allowing NO production by human Mphi in culture remain poorly defined, rendering more difficult the study of the effector functions of NO in these cells. To alleviate this problem, cells of the U937 monocytoid line were engineered to express iNOS by transfection with human hepatic iNOS (DFGiNOS), leading to production of NO on supplementation with the cofactor tetrahy...
    In mice, the high inducible synthesis of nitric oxide (NO) resulting from inducible NO synthase (iNOS, NOS2) expression by macrophages (Mphi) is considered an essential component of the protective immune response against infection by... more
    In mice, the high inducible synthesis of nitric oxide (NO) resulting from inducible NO synthase (iNOS, NOS2) expression by macrophages (Mphi) is considered an essential component of the protective immune response against infection by intracellular pathogens. Conversely, in humans, the question of a role for NO as an antimicrobial defense mechanism has been the subject of much debate. Recently, however, iNOS expression by human Mphi and formation of NO or its derivatives have been reported both in vivo and in vitro, strongly suggesting that human Mphi are indeed capable of inducible NO synthesis. However, the conditions allowing NO production by human Mphi in culture remain poorly defined, rendering more difficult the study of the effector functions of NO in these cells. To alleviate this problem, cells of the U937 monocytoid line were engineered to express iNOS by transfection with human hepatic iNOS (DFGiNOS), leading to production of NO on supplementation with the cofactor tetrahy...
    Nitric oxide (NO) produced by inducible NO synthase (iNOS, NOS-2) is an important component of the macrophage-mediated immune defense toward numerous pathogens. Murine macrophages produce NO after cytokine activation, whereas, under... more
    Nitric oxide (NO) produced by inducible NO synthase (iNOS, NOS-2) is an important component of the macrophage-mediated immune defense toward numerous pathogens. Murine macrophages produce NO after cytokine activation, whereas, under similar conditions, human macrophages produce low levels or no NO at all. Although human macrophages can express iNOS mRNA and protein on activation, whether they possess the complete machinery necessary for NO synthesis remains controversial. To define the conditions necessary for human monocytes/macrophages to synthesize NO when expressing a functional iNOS, the human monocytic U937 cell line was engineered to synthesize this enzyme, following infection with a retroviral expression vector containing human hepatic iNOS (DFGiNOS). Northern blot and Western blot analysis confirmed the expression of iNOS in transfected U937 cells both at the RNA and protein levels. NOS enzymatic activity was demonstrated in cell lysates by the conversion of L-[3H]arginine ...
    In mice, nitric oxide (NO) production by inducible NO synthase (iNOS), is a component of the control of Brucella infection. In humans, the involvement of iNOS in infection is still a matter of debate. Based on in vitro experiments, it was... more
    In mice, nitric oxide (NO) production by inducible NO synthase (iNOS), is a component of the control of Brucella infection. In humans, the involvement of iNOS in infection is still a matter of debate. Based on in vitro experiments, it was recently postulated that in humans, Brucella infection tends to become chronic because NO cannot exert its deleterious effect. In fact, conditions allowing NO production by human macrophages in culture are poorly defined, rendering the in vitro study of NO function difficult. Using DFGiNOS U937 macrophagic cells engineered to produce NO and U937 cells activated by ligation of IgE receptors, we showed that the intracellular development of Brucella was impaired in human macrophages, which produced NO. Although Brucella-infected human macrophagic phagocytes did not release NO in commonly used models of infection, the machinery required to produce NO was expressed in these cells and could be triggered by cell membrane receptors present on the infected cells. Therefore, the lack of NO production in isolated human macrophages infected by Brucella under in vitro conditions did not exclude a possible involvement of NO in the control of human brucellosis.
    Background. Recent advances in rational adjuvant design and antigen selection have enabled a new generation of vaccines with potential to treat and prevent infectious disease. The aim of this study was to assess whether therapeutic... more
    Background. Recent advances in rational adjuvant design and antigen selection have enabled a new generation of vaccines with potential to treat and prevent infectious disease. The aim of this study was to assess whether therapeutic immunization could impact the course of Mycobacterium tuberculosis infection with use of a candidate tuberculosis vaccine antigen, ID93, formulated in a synthetic nanoemulsion adjuvant, GLA-SE, administered in combination with existing first-line chemotherapeutics rifampicin and isoniazid.Methods. We used a mouse model of fatal tuberculosis and the established cynomolgus monkey model to design an immuno-chemotherapeutic strategy to increase long-term survival and reduce bacterial burden, compared with standard antibiotic chemotherapy alone.Results. This combined approach induced robust and durable pluripotent antigen-specific T helper-1-type immune responses, decreased bacterial burden, reduced the duration of conventional chemotherapy required for surviv...
    Development of a subunit vaccine for Mycobacterium tuberculosis (Mtb) depends on the identification of Ags that induce appropriate T cell responses. Using bioinformatics, we selected a panel of 94 Mtb genes based on criteria that included... more
    Development of a subunit vaccine for Mycobacterium tuberculosis (Mtb) depends on the identification of Ags that induce appropriate T cell responses. Using bioinformatics, we selected a panel of 94 Mtb genes based on criteria that included growth in macrophages, up- or down-regulation under hypoxic conditions, secretion, membrane association, or because they were members of the PE/PPE or EsX families. Recombinant proteins encoded by these genes were evaluated for IFN-gamma recall responses using PBMCs from healthy subjects previously exposed to Mtb. From this screen, dominant human T cell Ags were identified and 49 of these proteins, formulated in CpG, were evaluated as vaccine candidates in a mouse model of tuberculosis. Eighteen of the individual Ags conferred partial protection against challenge with virulent Mtb. A combination of three of these Ags further increased protection against Mtb to levels comparable to those achieved with bacillus Calmette-Guérin vaccination. Vaccine ca...
    Developing a universal influenza vaccine that induces broad spectrum and longer-term immunity has become an important potentially achievable target in influenza vaccine research and development. Hemagglutinin (HA) and neuraminidase (NA)... more
    Developing a universal influenza vaccine that induces broad spectrum and longer-term immunity has become an important potentially achievable target in influenza vaccine research and development. Hemagglutinin (HA) and neuraminidase (NA) are the two major influenza virus antigens. Although antibody responses against influenza virus are mainly directed toward HA, NA is reported to be more genetically stable; hence NA-based vaccines have the potential to be effective for longer time periods. NA-specific immunity has been shown to limit the spread of influenza virus, thus reducing disease symptoms and providing cross-protection against heterosubtypic viruses in mouse challenge experiments. The production of large quantities of highly pure and stable NA could be beneficial for the development of new antivirals, subunit-based vaccines, and novel diagnostic tools. In this study, recombinant NA (rNA) was produced in mammalian cells at high levels from both swine A/California/07/2009 (H1N1) ...
    Seasonal influenza is a vaccine-preventable disease that remains a major health problem worldwide, especially in immune-compromised populations. The impact of influenza disease is even greater when strains drift, and influenza pandemics... more
    Seasonal influenza is a vaccine-preventable disease that remains a major health problem worldwide, especially in immune-compromised populations. The impact of influenza disease is even greater when strains drift, and influenza pandemics can result when animal-derived influenza strains combine with seasonal strains. In this study, we used the SAM® technology and characterized the immunogenicity and efficacy of a self-amplifying RNA expressing influenza hemagglutinin (HA) antigen, (SAM(HA)) formulated with a novel oil-in-water cationic nanoemulsion (CNE). We demonstrated that SAM(HA) was immunogenic in ferrets and facilitated containment of viral replication in the upper respiratory tract of influenza virus-infected animals. In mice, SAM(HA) induced potent functional neutralizing antibody and cellular immune responses, characterized by HA-specific CD4 T helper (Th) 1 and CD8 cytotoxic T cells. Furthermore, mice immunized with SAM(HA) derived from the influenza A virus A/California/7/2009 (H1N1) strain (Cal) were protected from a lethal challenge with the heterologous mouse-adapted A/PR/8/1934 (H1N1) virus strain (PR8). Sera derived from SAM(H1-Cal)-immunized animals were not cross-reactive with the PR8 virus, whereas cross-reactivity was observed for HA-specific CD4 and CD8 T cells. Finally, depletion of T cells demonstrated that T-cell responses were essential in mediating heterologous protection. If the SAM vaccine platform proves safe, well tolerated, and effective in humans, the fully synthetic SAM vaccine technology could provide a rapid response platform to control pandemic influenza. In this paper, we describe protective immune responses in mice and ferrets after vaccination with a novel HA-based influenza. This novel type of vaccine elicits both humoral and cellular immune responses. While vaccine-specific antibodies are the key players in mediating protection from homologous influenza virus infections, vaccine-specific T cells contribute to the control of heterologous infections. The rapid production capacity and the synthetic origin of the vaccine antigen make this platform particularly exploitable in case of influenza pandemic.
    Antibodies (Ab) to neuraminidase (NA) play a role in limiting influenza infection and might help reduce the disease impact. The most widely used serological assay to measure functional anti-NA immune responses is the Enzyme-Linked Lectin... more
    Antibodies (Ab) to neuraminidase (NA) play a role in limiting influenza infection and might help reduce the disease impact. The most widely used serological assay to measure functional anti-NA immune responses is the Enzyme-Linked Lectin Assay (ELLA) which relies on hemagglutinin (HA) mismatched virus reassortants, or detergent treated viruses as the NA source to overcome interference associated with steric hindrance of anti-HA Ab present in sera. The difficulty in producing and handling these reagents, which are not easily adapted for screening large numbers of samples, limits the routine analysis of functional anti-NA Ab in clinical trials. In this study, we produced influenza lentiviral pseudoparticles (PPs) containing only the NA antigen (NA-PPs) with a simple two-plasmid co-transfection system. NA-PPs were characterized and tested as an innovative source of NA in the NA inhibition (NI) assay. Both swine A/California/07/2009 (H1N1) and avian A/turkey/Turkey/01/2005 (H5N1) N1s within NA-PPs retained their sialidase activity and were specifically inhibited by homologous and N1 subtype-specific, heterologous sheep sera. Moreover, A/California/07/2009 N1-PPs were a better source of NA compared to whole live and detergent treated H1N1 viruses in ELLA, likely due to lack of interference by anti-HA Ab, and absence of possible structural modifications caused by treatment with detergent. This innovative assay is safer and applicable to all NAs. Taken together, these results highlight the potential of NA-PPs-based NI assays to be developed as sensitive, flexible, easy to handle and scalable serological tests for routine NA immune response analysis.
    Staphylococcus aureus (S. aureus) is an important opportunistic pathogen that may cause invasive life-threatening infections, like sepsis and pneumonia. Due to the increasing antibiotic resistance, the development of an effective vaccine... more
    Staphylococcus aureus (S. aureus) is an important opportunistic pathogen that may cause invasive life-threatening infections, like sepsis and pneumonia. Due to the increasing antibiotic resistance, the development of an effective vaccine against S. aureus is needed. Although a correlate of protection against staphylococcal diseases is not yet established, several findings suggest that both antibodies and CD4 T cells might contribute to optimal immunity. In this study, we show that adjuvanting a multivalent vaccine (4C-Staph) with MF59, an oil-in-water emulsion licensed in human vaccines, further potentiated antigen-specific IgG titers and CD4 T-cell responses compared to alum and conferred protection in the peritonitis model of S. aureus infection. Moreover, we showed that MF59- and alum-adjuvanted 4C-Staph vaccines induced persistent antigen-specific humoral and T-cell responses, and protected mice from infection up to 4 months after immunization. Furthermore, 4C-Staph formulated with MF59 was used to investigate which immune compartment is involved in vaccine-induced protection. Using CD4 T cell-depleted mice or B cell-deficient mice, we demonstrated that both T and B-cell responses contributed to 4C-Staph vaccine-mediated protective immunity. However, the role of CD4 T cells seemed more evident in the presence of low-antibody responses. This study provides preclinical data further supporting the use of the adjuvanted 4C-Staph vaccines against S. aureus diseases, and provides critical insights on the correlates of protective immunity necessary to combat this pathogen.
    Specialized APC such as macrophages, B cells and especially DC have the capacity to capture, process and present in a MHC class-I restricted manner various exogenous cell associated antigens, including minor histocompatibility antigens,... more
    Specialized APC such as macrophages, B cells and especially DC have the capacity to capture, process and present in a MHC class-I restricted manner various exogenous cell associated antigens, including minor histocompatibility antigens, tumor antigens, or antigens derived from apoptotic, necrotic and/or virus-infected cells (1-4), a process referred to as cross-presentation. Cross-presentation can be extended to a wide range of
    Staphylococcus aureus is a human bacterial pathogen causing a variety of diseases. The occurrence of multidrug resistant strains of Staphylococcus aureus underlines the need for a vaccine. Defining immune correlates of protection may... more
    Staphylococcus aureus is a human bacterial pathogen causing a variety of diseases. The occurrence of multidrug resistant strains of Staphylococcus aureus underlines the need for a vaccine. Defining immune correlates of protection may support the design of an effective vaccine. We used a murine Staphylococcus aureus infection model, in which bacteria were inoculated in an air-pouch generated on the back of the animal. Analysis of the air-pouch content in mice immunized or not with an adjuvanted multiantigen vaccine formulation (4C-Staph) prior to infection allowed us to measure bacteria, cytokines and 4C-Staph-specific antibodies, and to analyze host immune cells recruited to the infection site. Immunization with 4C-Staph resulted in accumulation of antigen-specific antibodies in the pouch and mitigated the infection. Neutrophils were the most abundant cells in the pouch, and they showed up-regulation of Fcγ receptor (FcγR) following immunization with 4C-Staph. Reduction of the infec...
    Lack of known mechanisms of protection against Staphylococcus aureus in humans is hindering development of efficacious vaccines. Preclinical as well as clinical data suggest that antibodies play an important role against S. aureus. For... more
    Lack of known mechanisms of protection against Staphylococcus aureus in humans is hindering development of efficacious vaccines. Preclinical as well as clinical data suggest that antibodies play an important role against S. aureus. For instance, certain hypogammaglobulinaemic patients are at increased risk of staphylococcal infections. However, development of effective humoral response may be dampened by converging immune-evasion mechanisms of S. aureus. We hypothesize that B-cell proliferation induced by staphylococcal protein A (SpA) and continuous antigen exposure, without the proper T-cell help and cytokine stimuli, leads to antigen-activated B-cell deletion and anergy. Recent findings suggest an important role of type I neutrophils (PMN-I) and conventionally activated macrophages (M1) against S. aureus, while alternatively activated macrophages (M2) favour biofilm persistence and sepsis. In addition, neutrophil-macrophage cooperation promotes extravasation and activation of neu...
    Innate immunity confers an immediate nonspecific mechanism of microbial recognition through germ line-encoded pattern recognition receptors (PRRs). Of these, Toll-like receptors (TLRs) and nucleotide-binding and oligomerization domain... more
    Innate immunity confers an immediate nonspecific mechanism of microbial recognition through germ line-encoded pattern recognition receptors (PRRs). Of these, Toll-like receptors (TLRs) and nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) have shaped our current understanding of innate regulation of adaptive immunity. It is now recognized that PRRs are paramount in instructing an appropriate adaptive immune response. Their ligands have been the focus of adjuvant research with the goal of generating modern vaccine combinations tailored to specific pathogens. In this review we will highlight the recent findings in the field of adjuvant research with a particular focus on the potential of TLR and NLR ligands as adjuvants and their influence on adaptive immune responses.
    We have studied the immunogenicity of Plasmodium falciparum circumsporozoite (CS) protein-derived synthetic polypeptides in mice. These synthetic peptides correspond to the N- and the C-terminal domains 22-125 and 289-390, respectively of... more
    We have studied the immunogenicity of Plasmodium falciparum circumsporozoite (CS) protein-derived synthetic polypeptides in mice. These synthetic peptides correspond to the N- and the C-terminal domains 22-125 and 289-390, respectively of the P. falciparum 7G8 isolate CS protein expressed on the sporozoite surface. They comprise what is believed to be the mature protein, except for the central repetitive B cell domain. BALB/c (H-2d) mice were immunized s.c. with 50 micrograms soluble CS polypeptides emulsified in IFA. After a single immunization, CS-specific helper and cytotoxic T lymphocytes (CTLs) could be obtained. The resultant CTLs obtained by in vitro restimulation of primed lymph node (LN) cells recognized H-2Kd target cells in the presence of short synthetic peptides defined in the present study. These epitopes are contained within the N- and C-terminal regions of the CS protein, and correspond to sequences 39-47 and 333-342. In addition, these CTLs can specifically lyse H-2...
    Despite the widespread use of the childhood vaccine against tuberculosis (TB), Mycobacterium bovis bacillus Calmette-Guérin (BCG), the disease remains a serious global health problem. A successful vaccine against TB that replaces or... more
    Despite the widespread use of the childhood vaccine against tuberculosis (TB), Mycobacterium bovis bacillus Calmette-Guérin (BCG), the disease remains a serious global health problem. A successful vaccine against TB that replaces or boosts BCG would include antigens that induce or recall the appropriate T cell responses. Four Mycobacterium tuberculosis (Mtb) antigens--including members of the virulence factor families PE/PPE and EsX or antigens associated with latency--were produced as a single recombinant fusion protein (ID93). When administered together with the adjuvant GLA-SE, a stable oil-in-water nanoemulsion, the fusion protein was immunogenic in mice, guinea pigs, and cynomolgus monkeys. In mice, this fusion protein-adjuvant combination induced polyfunctional CD4 T helper 1 cell responses characterized by antigen-specific interferon-γ, tumor necrosis factor, and interleukin-2, as well as a reduction in the number of bacteria in the lungs of animals after they were subsequent...
    A new strategy for the rapid identification of new malaria antigens based on protein structural motifs was previously described. We identified and evaluated the malaria vaccine potential of fragments of several malaria antigens containing... more
    A new strategy for the rapid identification of new malaria antigens based on protein structural motifs was previously described. We identified and evaluated the malaria vaccine potential of fragments of several malaria antigens containing α-helical coiled coil protein motifs. By taking advantage of the relatively short size of these structural fragments, we constructed different poly-epitopes in which 3 or 4 of these segments were joined together via a non-immunogenic linker. Only peptides that are targets of human antibodies with anti-parasite in vitro biological activities were incorporated. One of the constructs, P181, was well recognized by sera and peripheral blood mononuclear cells (PBMC) of adults living in malaria-endemic areas. Affinity purified antigen-specific human antibodies and sera from P181-immunized mice recognised native proteins on malaria-infected erythrocytes in both immunofluorescence and western blot assays. In addition, specific antibodies inhibited parasite development in an antibody dependent cellular inhibition (ADCI) assay. Naturally induced antigen-specific human antibodies were at high titers and associated with clinical protection from malaria in longitudinal follow-up studies in Senegal.
    The timing of vaccine availability is essential for an effective response to pandemic influenza. In 2009, vaccine became available after the disease peak, and this has motivated the development of next generation vaccine technologies for... more
    The timing of vaccine availability is essential for an effective response to pandemic influenza. In 2009, vaccine became available after the disease peak, and this has motivated the development of next generation vaccine technologies for more rapid responses. The SAM(®) vaccine platform, now in pre-clinical development, is based on a synthetic, self-amplifying mRNA, delivered by a synthetic lipid nanoparticle (LNP). When used to express seasonal influenza hemagglutinin (HA), a SAM vaccine elicited potent immune responses, comparable to those elicited by a licensed influenza subunit vaccine preparation. When the sequences coding for the HA and neuraminidase (NA) genes from the H7N9 influenza outbreak in China were posted on a web-based data sharing system, the combination of rapid and accurate cell-free gene synthesis and SAM vaccine technology allowed the generation of a vaccine candidate in 8 days. Two weeks after the first immunization, mice had measurable hemagglutinin inhibition (HI) and neutralizing antibody titers against the new virus. Two weeks after the second immunization, all mice had HI titers considered protective. If the SAM vaccine platform proves safe, potent, well tolerated and effective in humans, fully synthetic vaccine technologies could provide unparalleled speed of response to stem the initial wave of influenza outbreaks, allowing first availability of a vaccine candidate days after the discovery of a new virus.
    The ability to process microbial antigens and present them at the surface of cells is an important aspect of our innate ability to clear infections. It is generally accepted that antigens in the cytoplasm are loaded in the endoplasmic... more
    The ability to process microbial antigens and present them at the surface of cells is an important aspect of our innate ability to clear infections. It is generally accepted that antigens in the cytoplasm are loaded in the endoplasmic reticulum and presented at the cell surface on major histocompatibility complex (MHC) class I molecules, whereas peptides present in endo/phagocytic compartments are presented on MHC class II molecules. Despite the apparent segregation of the class I and class II pathways, antigens from intracellular pathogens including mycobacteria, Escherichia coli, Salmonella typhimurium, Brucella abortus and Leishmania, have been shown to elicit an MHC class-I-dependent CD8+ T-cell response, a process referred to as cross-presentation. The cellular mechanisms allowing the cross-presentation pathway are poorly understood. Here we show that phagosomes display the elements and properties needed to be self-sufficient for the cross-presentation of exogenous antigens, a newly ascribed function linked to phagocytosis mediated by the endoplasmic reticulum.
    In multicellular organisms, cellular growth and development can be controlled by programmed cell death (PCD), which is defined by a sequence of regulated events. However, PCD is thought to have evolved not only to regulate growth and... more
    In multicellular organisms, cellular growth and development can be controlled by programmed cell death (PCD), which is defined by a sequence of regulated events. However, PCD is thought to have evolved not only to regulate growth and development in multicellular organisms but also to have a functional role in the biology of unicellular organisms. In protozoan parasites and in other unicellular organisms, features of PCD similar to those in multicellular organisms have been reported, suggesting some commonality in the PCD pathway between unicellular and multicellular organisms. However, more extensive studies are needed to fully characterise the PCD pathway and to define the factors that control PCD in the unicellular organisms. The understanding of the PCD pathway in unicellular organisms could delineate the evolutionary origin of this pathway. Further characterisation of the PCD pathway in the unicellular parasites could provide information regarding their pathogenesis, which could be exploited to target new drugs to limit their growth and treat the disease they cause.
    We have identified new malaria vaccine candidates through the combination of bioinformatics prediction of stable protein domains in the Plasmodium falciparum genome, chemical synthesis of polypeptides, in vitro biological functional... more
    We have identified new malaria vaccine candidates through the combination of bioinformatics prediction of stable protein domains in the Plasmodium falciparum genome, chemical synthesis of polypeptides, in vitro biological functional assays, and association of an antigen-specific antibody response with protection against clinical malaria. Within the predicted open reading frame of P. falciparum hypothetical protein PFF0165c, several segments with low hydrophobic amino acid content, which are likely to be intrinsically unstructured, were identified. The synthetic peptide corresponding to one such segment (P27A) was well recognized by sera and peripheral blood mononuclear cells of adults living in different regions where malaria is endemic. High antibody titers were induced in different strains of mice and in rabbits immunized with the polypeptide formulated with different adjuvants. These antibodies recognized native epitopes in P. falciparum-infected erythrocytes, formed distinct bands in Western blots, and were inhibitory in an in vitro antibody-dependent cellular inhibition parasite-growth assay. The immunological properties of P27A, together with its low polymorphism and association with clinical protection from malaria in humans, warrant its further development as a malaria vaccine candidate.

    And 7 more