Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Wendy Walwyn

    There is growing evidence that tonic activity of the opioid system may be important in the modulation of affective state. Naloxone produces a conditioned place aversion in rodents, an effect that is centrally mediated. Previous... more
    There is growing evidence that tonic activity of the opioid system may be important in the modulation of affective state. Naloxone produces a conditioned place aversion in rodents, an effect that is centrally mediated. Previous pharmacological data using antagonists with preferential actions at μ-, δ-, and κ-opioid receptors indicate the importance of the μ-opioid receptor in mediating this effect. We sought to test the μ-opioid receptor selectivity of naloxone aversion using μ-opioid receptor knock-out mice. μ-Opioid receptor knock-out and wild-type mice were tested for naloxone (10 mg/kg, s.c.) aversion using a place conditioning paradigm. As a positive control for associative learning, knock-out mice were tested for conditioned place aversion to a κ agonist, U50,488H (2 mg/kg, s.c.). Naloxone produced a significant place aversion in wild-type mice, but failed to have any effect in μ-opioid receptor knock-out mice. On the other hand, both knock-out and wild-type mice treated with U50,488H spent significantly less time in the drug-paired chamber compared to their respective vehicle controls. We conclude that the μ-opioid receptor is crucial for the acquisition of naloxone-induced conditioned place aversion. Furthermore, in a separate experiment using C57BL/6 mice, the δ-selective antagonist naltrindole (10 or 30 mg/kg, s.c.) failed to produce conditioned place aversion.Taken together, these data further support the notion that naloxone produces aversion by antagonizing tonic opioid activity at the μ-opioid receptor.
    BACKGROUND: Pentobarbital decreases the gain of the baroreceptor reflex on the order of 50%, and this blunting is caused nearly entirely by decreasing cardioinhibitory parasympathetic activity. The most likely site of action of... more
    BACKGROUND: Pentobarbital decreases the gain of the baroreceptor reflex on the order of 50%, and this blunting is caused nearly entirely by decreasing cardioinhibitory parasympathetic activity. The most likely site of action of pentobarbital is the gamma-aminobutyric acid type A (GABA(A)) receptor. The authors tested whether pentobarbital augments the inhibitory GABAergic neurotransmission to cardiac parasympathetic neurons, and whether expression of the GABA(A) epsilon subunit prevents this facilitation.METHODS: The authors used a novel approach to study the effect of pentobarbital on identified cardiac parasympathetic preganglionic neurons in rat brainstem slices. The cardiac parasympathetic neurons in the nucleus ambiguus were retrogradely prelabeled with a fluorescent tracer and were visually identified for patch clamp recording. The effects of pentobarbital on spontaneous GABAergic synaptic events were tested. An adenovirus was used to express the epsilon subunit of the GABA(A) receptor in cardiac parasympathetic neurons to examine whether this transfection alters pentobarbital-mediated changes in GABAergic neurotransmission.RESULTS: Pentobarbital increased the duration but not the frequency or amplitude of spontaneous GABAergic currents in cardiac parasympathetic neurons. Transfection of cardiac parasympathetic neurons with the epsilon subunit of the GABA(A) receptor prevented the pentobarbital-evoked facilitation of GABAergic currents.CONCLUSIONS: Pentobarbital, at clinically relevant concentrations, prolongs the duration of spontaneous inhibitory postsynaptic currents that impinge on cardiac parasympathetic neurons. This action would augment the inhibition of cardiac parasympathetic neurons, reduce parasympathetic cardioinhibitory activity, and increase heart rate. Expression of the GABA(A) receptor epsilon subunit in cardiac parasympathetic neurons renders the GABA receptors insensitive to pentobarbital.
    It is not clear whether primary afferent neurons express func- tional cell-surface ! opioid receptors. We examined ! receptor coupling to Ca2! channels in mouse dorsal root ganglion neu- rons under basal conditions and after ! receptor... more
    It is not clear whether primary afferent neurons express func- tional cell-surface ! opioid receptors. We examined ! receptor coupling to Ca2! channels in mouse dorsal root ganglion neu- rons under basal conditions and after ! receptor up-regulation. (D-Ala2,Phe4,Gly5-ol)-enkephalin (DAMGO), (D-Ala2,D-Leu5)-en- kephalin (DADLE), trans-(" )-3,4-dichloro-N-methyl-N-(2-(1- pyrrolidinyl)cyclohexyl) benzene-acetamide methanesulfonate (U-50,488H; 1 " M), and baclofen (50 " M) inhibited Ca2! cur-
    Ligand-specific recruitment of arrestins facilitates functional selectivity of G-protein-coupled receptor signaling. Here, we describe agonist-selective recruitment of different arrestin isoforms to the delta opioid receptor in mice. A... more
    Ligand-specific recruitment of arrestins facilitates functional selectivity of G-protein-coupled receptor signaling. Here, we describe agonist-selective recruitment of different arrestin isoforms to the delta opioid receptor in mice. A high-internalizing delta opioid receptor agonist (SNC80) preferentially recruited arrestin 2 and, in arrestin 2 knock-outs (KOs), we observed a significant increase in the potency of SNC80 to inhibit mechanical hyperalgesia and decreased acute tolerance. In contrast, the low-internalizing delta agonists (ARM390, JNJ20788560) preferentially recruited arrestin 3 with unaltered behavioral effects in arrestin 2 KOs. Surprisingly, arrestin 3 KO revealed an acute tolerance to these low-internalizing agonists, an effect never observed in wild-type animals. Furthermore, we examined delta opioid receptor-Ca(2+)channel coupling in dorsal root ganglia desensitized by ARM390 and the rate of resensitization was correspondingly decreased in arrestin 3 KOs. Live-cel...
    Many chronic pain disorders alternate between bouts of pain and periods of remission. The latent sensitization model reproduces this in rodents by showing that the apparent recovery ("remission") from inflammatory or neuropathic... more
    Many chronic pain disorders alternate between bouts of pain and periods of remission. The latent sensitization model reproduces this in rodents by showing that the apparent recovery ("remission") from inflammatory or neuropathic pain can be reversed by opioid antagonists. Therefore, this remission represents an opioid receptor-mediated suppression of a sustained hyperalgesic state. To identify the receptors involved, we induced latent sensitization in mice and rats by injecting complete Freund's adjuvant (CFA) in the hindpaw. In WT mice, responses to mechanical stimulation returned to baseline 3 weeks after CFA. In μ-opioid receptor (MOR) knock-out (KO) mice, responses did not return to baseline but partially recovered from peak hyperalgesia. Antagonists of α2A-adrenergic and δ-opioid receptors reinstated hyperalgesia in WT mice and abolished the partial recovery from hyperalgesia in MOR KO mice. In rats, antagonists of α2A adrenergic and μ-, δ-, and κ-opioid receptors...
    Opioids play a central role in nociception. Endogenous opioids modulate the experience of pain, and opioid therapeutics are a mainstay for the clinical management of acute and chronic pain. In spite of widespread use, not all types of... more
    Opioids play a central role in nociception. Endogenous opioids modulate the experience of pain, and opioid therapeutics are a mainstay for the clinical management of acute and chronic pain. In spite of widespread use, not all types of pain are beneficially treated by current opioid therapeutics. The balance between benefit and adverse effects for treatment of different pain modalities may be impacted by which opioid receptors and receptor-mediated signaling pathways are activated by each ligand. Recent advances in the understanding of opioid receptor pharmacology are providing insights into novel approaches to optimize opioid pharmaceuticals for different pain modalities. In this chapter, we will describe the components of the opioid system and what aspects remain controversial. We will then cover the current understanding on how and where opioid systems could control pain. What concerns the clinicians will then be addressed, and we will finish with several emerging concepts that ma...
    Latent sensitization is a rodent model of chronic pain that reproduces both its episodic nature and its sensitivity to stress. It is triggered by a wide variety of injuries ranging from injection of inflammatory agents to nerve damage. It... more
    Latent sensitization is a rodent model of chronic pain that reproduces both its episodic nature and its sensitivity to stress. It is triggered by a wide variety of injuries ranging from injection of inflammatory agents to nerve damage. It follows a characteristic time course in which a hyperalgesic phase is followed by a phase of remission. The hyperalgesic phase lasts between a few days to several months, depending on the triggering injury. Injection of μ-opioid receptor inverse agonists (e.g., naloxone or naltrexone) during the remission phase induces reinstatement of hyperalgesia. This indicates that the remission phase does not represent a return to the normal state, but rather an altered state in which hyperalgesia is masked by constitutive activity of opioid receptors. Importantly, stress also triggers reinstatement. Here we describe in detail procedures for inducing and following latent sensitization in its different phases in rats and mice. © 2015 by John Wiley & Sons, Inc.
    There is growing evidence that tonic activity of the opioid system may be important in the modulation of affective state. Naloxone produces a conditioned place aversion in rodents, an effect that is centrally mediated. Previous... more
    There is growing evidence that tonic activity of the opioid system may be important in the modulation of affective state. Naloxone produces a conditioned place aversion in rodents, an effect that is centrally mediated. Previous pharmacological data using antagonists with preferential actions at mu-, delta-, and kappa-opioid receptors indicate the importance of the mu-opioid receptor in mediating this effect. We sought to test the mu-opioid receptor selectivity of naloxone aversion using mu-opioid receptor knock-out mice. mu-Opioid receptor knock-out and wild-type mice were tested for naloxone (10 mg/kg, s.c.) aversion using a place conditioning paradigm. As a positive control for associative learning, knock-out mice were tested for conditioned place aversion to a kappa agonist, U50,488H (2 mg/kg, s.c.). Naloxone produced a significant place aversion in wild-type mice, but failed to have any effect in mu-opioid receptor knock-out mice. On the other hand, both knock-out and wild-type ...
    Buprenorphine is a mixed opioid receptor agonist-antagonist used clinically for maintenance therapy in opiate addicts and pain management. Dose-response curves for buprenorphine-induced antinociception display ceiling effects or are bell... more
    Buprenorphine is a mixed opioid receptor agonist-antagonist used clinically for maintenance therapy in opiate addicts and pain management. Dose-response curves for buprenorphine-induced antinociception display ceiling effects or are bell shaped, which have been attributed to the partial agonist activity of buprenorphine at opioid receptors. Recently, buprenorphine has been shown to activate opioid receptor-like (ORL-1) receptors, also known as OP4 receptors. Here we demonstrate that buprenorphine, but not morphine, activates mitogen-activated protein kinase and Akt via ORL-1 receptors. Because the ORL-1 receptor agonist orphanin FQ/nociceptin blocks opioid-induced antinociception, we tested the hypothesis that buprenorphine-induced antinociception might be compromised by concomitant activation of ORL-1 receptors. In support of this hypothesis, the antinociceptive effect of buprenorphine, but not morphine, was markedly enhanced in mice lacking ORL-1 receptors using the tail-flick ass...
    Of the opioid receptors, the μ opioid receptor is the most well known as it mediates the important physiological states of analgesia and addiction. By contrast, the delta (δ) opioid receptor is not as well recognized and its role remains,... more
    Of the opioid receptors, the μ opioid receptor is the most well known as it mediates the important physiological states of analgesia and addiction. By contrast, the delta (δ) opioid receptor is not as well recognized and its role remains, for the most part, elusive. Drawing from recent studies, this chapter examines new information highlighting specific roles of this receptor
    μ-opioid receptors (MORs) are necessary for the analgesic and addictive effects of opioids such as morphine, but the MOR-expressing neuronal populations that mediate the distinct opiate effects remain elusive. Here we devised a new... more
    μ-opioid receptors (MORs) are necessary for the analgesic and addictive effects of opioids such as morphine, but the MOR-expressing neuronal populations that mediate the distinct opiate effects remain elusive. Here we devised a new conditional bacterial artificial chromosome rescue strategy to show, in mice, that targeted MOR expression in a subpopulation of striatal direct-pathway neurons enriched in the striosome and nucleus accumbens, in an otherwise MOR-null background, restores opiate reward and opiate-induced striatal dopamine release and partially restores motivation to self administer an opiate. However, these mice lack opiate analgesia or withdrawal. We used Cre-mediated deletion of the rescued MOR transgene to establish that expression of the MOR transgene in the striatum, rather than in extrastriatal sites, is needed for the restoration of opiate reward. Our study demonstrates that a subpopulation of striatal direct-pathway neurons is sufficient to support opiate reward-d...
    Corticostriatal signaling participates in sensitized responses to drugs of abuse, where short-term increases in dopamine availability provoke persistent, yet reversible, changes in glutamate release. Prior studies in mice show that... more
    Corticostriatal signaling participates in sensitized responses to drugs of abuse, where short-term increases in dopamine availability provoke persistent, yet reversible, changes in glutamate release. Prior studies in mice show that amphetamine withdrawal promotes a chronic presynaptic depression in glutamate release, whereas an amphetamine challenge reverses this depression by potentiating corticostriatal activity in direct pathway medium spiny neurons. This synaptic plasticity promotes corticostriatal activity and locomotor sensitization through upstream changes in the activity of tonically active cholinergic interneurons (ChIs). We used a model of operant drug-taking behaviors, in which mice self-administered amphetamine through an in-dwelling catheter. Mice acquired amphetamine self-administration under fixed and increasing schedules of reinforcement. Following a period of abstinence, we determined whether nicotinic acetylcholine receptors modified drug-seeking behavior and associated alterations in ChI firing and corticostriatal activity. Mice responding to conditioned reinforcement showed reduced ChI and corticostriatal activity ex vivo, which paradoxically increased following an amphetamine challenge. Nicotine, in a concentration that increases Ca(2+) influx and desensitizes α4β2*-type nicotinic receptors, reduced amphetamine-seeking behaviors following abstinence and amphetamine-induced locomotor sensitization. Nicotine blocked the depression of ChI firing and corticostriatal activity and the potentiating response to an amphetamine challenge. Together, these results demonstrate that nicotine reduces reward-associated behaviors following repeated amphetamine and modifies the changes in ChIs firing and corticostriatal activity. By returning glutamatergic activity in amphetamine self-administering mice to a more stable and normalized state, nicotine limits the depression of striatal activity in withdrawal and the increase in activity following abstinence and a subsequent drug challenge.
    Buprenorphine is a mixed opioid receptor agonist-antagonist used clinically for maintenance therapy in opiate addicts and pain management. Dose-response curves for buprenorphine-induced antinociception display ceiling effects or are bell... more
    Buprenorphine is a mixed opioid receptor agonist-antagonist used clinically for maintenance therapy in opiate addicts and pain management. Dose-response curves for buprenorphine-induced antinociception display ceiling effects or are bell shaped, which have been attributed to ...