Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Among the multiple possibilities to study human depressive disorders, animal models remain important preclinical tools. They allow the understanding of the mechanisms of action of antidepressant drugs. Primarily developed in rat, animal... more
Among the multiple possibilities to study human depressive disorders, animal models remain important preclinical tools. They allow the understanding of the mechanisms of action of antidepressant drugs. Primarily developed in rat, animal models of depression have been adapted to the mouse, an easy-to-use mammal with better genetic possibilities than rats. As an example, genetic manipulation of the serotoninergic 5-hydroxytryptamine-HT; (5-HT) system provided important opportunities to investigate the role of this monoamine in mood disorders. The contribution of either constitutive knockout (KO), tissue specific, or inducible KO mice and animal models in the current knowledge of the pathophysiology and treatment of depression is unanimously recognized. The phenotype of genetically manipulated animals is strongly influenced by both the genetic background of the animal as well as environmental factors. For these reasons, it is necessary to underline that KO mice have been generated on various genetic backgrounds, which strongly influence the behavioral and neurochemical responses to the tests. The present review will thus focus on KO mice lacking G protein-coupled monoaminergic receptors (e.g; 5-HT1B, 5-HT1A, and 5-HT4 receptors) and the 5-HT serotonin transporter, which is the main target of antidepressant drugs (or strategies). The importance of KO mice for neurotrophic factors, particularly for brain-derived neurotrophic factor and its main receptor displaying a tyrosine kinase activity, will also be addressed to illustrate the fact that in preclinical studies, combination of genetic manipulations with pharmacological ones should allow further progress in the field of neuropsychopharmacology.
Antagonists at NK1 substance P receptors have demonstrated similar antidepressant properties in both animal paradigms and in human as selective serotonin reuptake inhibitors (SSRIs) that induce desensitization of 5-HT1A autoreceptors... more
Antagonists at NK1 substance P receptors have demonstrated similar antidepressant properties in both animal paradigms and in human as selective serotonin reuptake inhibitors (SSRIs) that induce desensitization of 5-HT1A autoreceptors within the dorsal raphe nucleus (DRN). We investigated whether this receptor adaptation also occurs upon NK1 receptor blockade. C57B/L6J mice were treated for 21 days with the selective NK1 receptor antagonist GR 205171 (10 mg/kg daily) through subcutaneously implanted osmotic mini pumps, and DRN 5-HT1A autoreceptor functioning was assessed using various approaches. Recording of DRN serotonergic neurons in brainstem slices showed that GR 205171 treatment reduced (by ∼1.5 fold) the potency of the 5-HT1A receptor agonist, ipsapirone, to inhibit cell firing. In parallel, the 5-HT1A autoreceptor-mediated [35S]GTP-γ-S binding induced by 5-carboxamidotryptamine onto the DRN in brainstem sections was significantly decreased in GR 205171-treated mice. In vivo microdialysis showed that the cortical 5-HT overflow caused by acute injection of the SSRI paroxetine (1 mg/kg) was twice as high in GR 205171-treated as in vehicle-treated controls. In the DRN, basal 5-HT outflow was significantly enhanced by GR 205171 treatment. These data supported the hypothesis that chronic NK1 receptor blockade induces a functional desensitization of 5-HT1A autoreceptors similar to that observed with SSRIs.
Research Interests:
We recently demonstrated that mice lacking the gene for substance P (neurokinin 1) receptors (NK1-/-) show improved cortical dialysate serotonin (5-HT) responses to paroxetine [J. Neurosci. 21 (2001) 8188]. To test for changes that may... more
We recently demonstrated that mice lacking the gene for substance P (neurokinin 1) receptors (NK1-/-) show improved cortical dialysate serotonin (5-HT) responses to paroxetine [J. Neurosci. 21 (2001) 8188]. To test for changes that may involve the 5-HT transporter (5-HTT) in these mutant mice, in vivo/in vitro studies were performed. Autoradiographic quantification of 5-HTT was performed: [3H]citalopram binding did not reveal any modification of 5-HT binding sites in the dorsal raphe nucleus (DRN) of wild-type NK1+/+ control and mutant NK1-/- mice. These results were further confirmed by 5-HTT mRNA quantification using competitive reverse transcription and polymerase chain reaction (RT-PCR) assay, which showed similar messenger levels in the DRN of both mice genotypes. The functional status of 5-HTT in vivo was tested by using the zero net flux method of quantitative microdialysis in two serotonergic nerve terminal regions, the frontal cortex and ventral hippocampus, of wild-type NK1+/+ and NK1-/- mice. Neither basal extracellular 5-HT levels nor the 5-HT extraction fraction of the probe (Ed an index of 5-HT uptake in vivo) differed between wild-type and mutant mice in the two brain regions studied. These results suggest that no compensatory response to the constitutive deletion of the tachykinin NK1 receptor involving changes in the activity of the selective 5-HT transporter occurred in the DRN, frontal cortex and ventral hippocampus in mice.
Substance P antagonists of the neurokinin-1 receptor type (NK1) are gaining growing interest as new antidepressant therapies. It has been postulated that these drugs exert this putative therapeutic effect without direct interactions with... more
Substance P antagonists of the neurokinin-1 receptor type (NK1) are gaining growing interest as new antidepressant therapies. It has been postulated that these drugs exert this putative therapeutic effect without direct interactions with serotonin (5-HT) neurones. Our recent microdialysis experiment performed in NK1 receptor knockout mice suggested evidence of changes in 5-HT neuronal function (Froger et al. 2001). The aim of the present study was to evaluate the effects of coadministration of the selective 5-HT reuptake inhibitor (SSRI) paroxetine with a NK1 receptor antagonist (GR205171 or L733060), given either intraperitoneally (i.p.) or locally into the dorsal raphe nucleus, on extracellular levels of 5-HT ([5-HT]ext) in the frontal cortex and the dorsal raphe nucleus using in vivo microdialysis in awake, freely moving mice. The systemic or intraraphe administration of a NK1 receptor antagonist did not change basal cortical [5-HT]ext in mice. A single systemic dose of paroxetine (4 mg/kg; i.p.) resulted in a statistically significant increase in [5-HT]ext with a larger extent in the dorsal raphe nucleus (+ 138% over basal AUC values), than in the frontal cortex (+ 52% over basal AUC values). Co-administration of paroxetine (4 mg/kg; i.p.) with the NK1 receptor antagonists, GR205171 (30 mg/kg; i.p.) or L733060 (40 mg/kg; i.p.), potentiated the effects of paroxetine on cortical [5-HT]ext in wild-type mice, whereas GR205171 (30 mg/kg; i.p.) had no effect on paroxetine-induced increase in cortical [5-HT]ext in NK1 receptor knock-out mice. When GR205171 (300 µmol/L) was perfused by ‘reverse microdialysis’ into the dorsal raphe nucleus, it potentiated the effects of paroxetine on cortical [5-HT]ext, and inhibited paroxetine-induced increase in [5-HT]ext in the dorsal raphe nucleus. Finally, in mice whose 5-HT transporters were first blocked by a local perfusion of 1 µmol/L of citalopram into the frontal cortex, a single dose of paroxetine (4 mg/kg i.p.) decreased cortical 5-HT release, and GR205171 (30 mg/kg i.p.) reversed this effect. The present findings suggest that NK1 receptor antagonists, when combined with a SSRI, augment 5-HT release by modulating substance P/5–HT interactions in the dorsal raphe nucleus.
Preclinical studies suggest that substance P (SP) neurokinin 1 (NK1) receptor antagonists are efficient in the treatment of anxiety and depression. This therapeutic activity could be mediated via stimulation of serotonin (5-HT) neurons... more
Preclinical studies suggest that substance P (SP) neurokinin 1 (NK1) receptor antagonists are efficient in the treatment of anxiety and depression. This therapeutic activity could be mediated via stimulation of serotonin (5-HT) neurons located in the dorsal raphe nucleus (DRN), which receive important SP-NK1 receptor immunoreactive innervations. The present study examined the effects of intraraphe injection of SP on extracellular 5-HT levels in the frontal cortex, ventral hippocampus, and DRN by using intracerebral microdialysis in conscious mice. Intraraphe SP injection dose dependently decreased cortical 5-HT release, whereas no effects were detected in the ventral hippocampus. Cortical effects were blocked by the selective NK1 receptor antagonist N-[[2-methoxy-5-[5-(trifluoromethyl)tetrazol-1-yl]phenyl]methyl]-2-phenylpiperidin-3-amine (GR205171) and completely dampened in mice lacking NK1 receptors. Furthermore, genetic (in knockout 5-HT1A(-/-) mice) or pharmacological inactivation of 5-HT1A autoreceptors blocked cortical responses to SP. Contrasting with its cortical effects, intraraphe SP injection increased 5-HT outflow in the DRN in wild-type mice; this effect was potentiated by a local perfusion of the selective 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY100635). Finally, SP-induced changes in frontal cortex and DRN dialysate 5-HT levels were blocked by the DRN perfusion of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate ionotropic receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX). These data support the hypothesis that SP-induced over-activation of 5-HT1A autoreceptors within the DRN limits cortical 5-HT release. A better knowledge of the complex relationship between tachykininergic, serotonergic, and glutamatergic systems within the DRN might help better understand the pathophysiology and subsequent treatment of depression.
Classical antidepressant drugs such as Selective Serotonin Reuptake Inhibitors (SSRIs) display several disadvantages, e.g., the onset of action (2 to 3 weeks) to start clinical benefits is too long, and a significant proportion of... more
Classical antidepressant drugs such as Selective Serotonin Reuptake Inhibitors (SSRIs) display several disadvantages, e.g., the onset of action (2 to 3 weeks) to start clinical benefits is too long, and a significant proportion of patients do not respond to this monotherapy. Several strategies have been proposed to overcome these problems, notably the use of potentiating agents, which combined with SSRIs, augment or accelerate their established antidepressant activity. Recent clinical trials proposed that compounds with dual action on both central serotonin (5-HT) and noradrenaline (NA) systems would have a faster action than SSRIs alone. Preclinical electrophysiological and neurochemical studies demonstrated that the putative new class of antidepressants, substance P (neurokinin 1) NK1 receptor antagonists, enhance brain monoaminergic neurotransmissions by reducing the sensitivity of 5-HT1A autoreceptors in the Dorsal Raphe Nucleus, and possibly alpha2 autoreceptors in the Locus Coeruleus. However, in several clinical studies, a similar delay of therapeutic effects has been reported with NK1 receptor antagonists and SSRIs. Recently intracerebral in vivo microdialysis studies were performed to examine the effects of genetic or pharmacological blockade of Substance P (SP)/ NK1 neurotransmission on SSRIs-induced increases in extracellular 5-HT levels in awake, freely moving mice. New evidences suggest that the combination of a NK1 receptor antagonist with a SSRI should benefit to depressed patients. This review describes our current knowledge of the role of SP and its preferred NK1 receptors mainly in the modulation of brain serotonergic activity.
Triple reuptake inhibitors represent a potential new class of antidepressant drugs that block norepinephrine (NE), dopamine (DA) and serotonin [5-hydroxytryptamine (5-HT)] transporters. The present in-vivo electrophysiological study was... more
Triple reuptake inhibitors represent a potential new class of antidepressant drugs that block norepinephrine (NE), dopamine (DA) and serotonin [5-hydroxytryptamine (5-HT)] transporters. The present in-vivo electrophysiological study was undertaken to determine the effects of the triple reuptake inhibitors SEP-225289 and DOV216303 on the neuronal activities of locus coeruleus (LC) NE, ventral tegmental area (VTA) DA and dorsal raphe (DR) 5-HT neurons. Administered acutely, SEP-225289 and DOV216303 dose-dependently decreased the spontaneous firing rate of LC NE, VTA DA and DR 5-HT neurons through the activation of α₂, D₂ and 5-HT(₁A) autoreceptors, respectively. Both compounds predominantly inhibited the firing rate of LC NE neurons while producing only a partial decrease in VTA DA and DR 5-HT neuronal discharge. SEP-225289 was equipotent at inhibiting 5-HT and NE transporters since it prolonged to the same extent the time required for a 50% recovery (RT₅₀) of the firing activity of dorsal hippocampus CA3 pyramidal neurons from the inhibition induced by microiontophoretic application of 5-HT and NE. Finally, in the presence of WAY100635, a 5-HT(₁A) receptor antagonist, SEP-225289 activated 5-HT neurons at doses that normally did not inhibit them. Taken together, the present results indicate that reciprocal interactions among NE, DA and 5-HT inputs need to be considered to anticipate the net effect of triple reuptake inhibitors on the enhancement of brain monoamine transmission. The results also suggest that the therapeutic action of triple reuptake inhibitors may be potentiated by antagonizing the cell body 5-HT(₁A) autoreceptors.
Biogenic amine transporters for serotonin and norepinephrine (5-HT and NE respectively), are major targets for currently available antidepressant drugs, particularly those inhibiting the reuptake of 5-HT and/or NE. Compelling evidence... more
Biogenic amine transporters for serotonin and norepinephrine (5-HT and NE respectively), are major targets for currently available antidepressant drugs, particularly those inhibiting the reuptake of 5-HT and/or NE. Compelling evidence suggest that dopamine (DA) is also involved in the pathophysiology and treatment of depression, leading to the development of a new class of antidepressants: the triple reuptake inhibitors that simultaneously inhibit 5-HT, NE and DA reuptake thereby prolonging their duration of action at postsynaptic levels. Although preclinical studies strongly suggest that triple reuptake inhibitors display antidepressant-like activity in various behavioural paradigms, including the forced swimming and the tail suspension tests, it has yet to be demonstrated that the addition of the dopaminergic component produces more robust effects than single- or dual-acting compounds. Several arguments favour this hypothesis and particularly the observation that DA may promote neurotrophic processes in the adult hippocampus, as 5-HT and NE do. It is thus possible that the stimulation of multiple signalling pathways resulting from the elevation of all three monoamines may account, in part, for an accelerated and/or greater antidepressant response. To predict the efficacy of triple reuptake inhibitors, it is important to take into consideration the existence of dense connections between monoaminergic neurons. Indeed, it is well established that the increase in central dopaminergic transmission regulates the neuronal activity of 5-HT and NE in the dorsal raphe (DR) and locus coeruleus (LC), respectively, while in turn, the ventral tegmental area (VTA), is sensitive to changes in 5-HT and NE release. This review synthetizes the pertinent litterature, focusing on the contribution of DA, to illustrate the rationale for designing improved antidepressants.
Nomifensine potently inhibits the reuptake of norepinephrine and dopamine in vitro. It is one of few antidepressants with marked potency to block dopamine reuptake that has ever been used clinically. Acute and sustained administration of... more
Nomifensine potently inhibits the reuptake of norepinephrine and dopamine in vitro. It is one of few antidepressants with marked potency to block dopamine reuptake that has ever been used clinically. Acute and sustained administration of nomifensine was investigated on the firing of monoaminergic neurons to understand its mechanism of action. In vivo extracellular recordings of locus coeruleus, ventral tegmental area and dorsal raphe nucleus neurons were obtained from male Sprague-Dawley rats. The intravenous injection of nomifensine in the locus coeruleus and ventral tegmental area yielded ED(50) values of 40 +/- 1 and 450 +/- 41 microg/kg, respectively, suggesting that nomifensine directly acted upon dopamine and norepinephrine neurons, since these values are proportional to its affinities for norepinephrine and dopamine transporters. There was no effect on 5-HT neurons. Nomifensine (5 mg/kg/day, subcutaneous, using minipumps) potently and significantly inhibited dopamine neuronal firing in the ventral tegmental area after 2 days, with recovery to normal after the 14-day treatment due to D(2) autoreceptor desensitization. Norepinephrine neuronal firing in the locus coeruleus was significantly decreased after 2 and 14 days. A significant increase in dorsal raphe nucleus 5-HT neuronal firing was seen after a two-day regimen, and remained elevated after 14 days. Desensitization of the 5-HT(1A) receptor on 5-HT neurons of the dorsal raphe nucleus occurred after two days of nomifensine administration. Nomifensine likely treated depression by acting on dopamine, norepinephrine and 5-HT neurons, highlighting the importance of the functional connectivity between these three monoaminergic systems.
Anatomical studies have established the existence of reciprocal relationships between the main population of monoamine, serotonin (5-HT), norepinephrine (NE) and dopamine (DA) neurons in the brain. The present study was thus conducted to... more
Anatomical studies have established the existence of reciprocal relationships between the main population of monoamine, serotonin (5-HT), norepinephrine (NE) and dopamine (DA) neurons in the brain. The present study was thus conducted to examine the firing activity of 5-HT and NE neurons in DA-depleted rats, as well as the firing activity of DA neurons in 5-HT- or NE-depleted rats. The selective lesion of DA neurons elicited by 6-hydroxydopamine (6-OHDA) decreased the spontaneous firing activity of dorsal raphe (DR) nucleus 5-HT neurons by 60%, thus revealing the excitatory effect of the DA input on these 5-HT neurons. In contrast, the selective lesion of 5-HT neurons produced by 5,7-dihydroxytryptamine (5,7-DHT) enhanced by 36% the firing activity of VTA DA neurons, thereby indicating an inhibitory effect of the 5-HT input on these DA neurons. With regard to the reciprocal interaction between DA and NE neurons, it was observed that the selective loss of DA neurons achieved by the intra-ventral tegmental area (VTA) injection of 6-OHDA increased the firing activity of a subset of locus coeruleus (LC) NE neurons by 47%. The selective loss of NE neurons in response to the intra-LC injection of 6-OHDA enhanced the firing activity of VTA DA neurons by 70%, demonstrating a net inhibitory role of the NE input on VTA DA neurons. These findings have important consequences for antidepressant treatments aimed at enhancing simultaneously 5-HT, NE and DA transmission. Indeed, based on the understanding of such interactions, it may be possible to develop strategies to improve the effectiveness of antidepressant drugs by preventing counter-productive negative feedback actions.
Research Interests: