Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Anne Walls

    It has been proposed that a considerable fraction of glucose metabolism proceeds via the glycogen-shunt consisting of conversion of glucose units to glycogen residues and subsequent production of glucose-1-phosphate to be metabolized in... more
    It has been proposed that a considerable fraction of glucose metabolism proceeds via the glycogen-shunt consisting of conversion of glucose units to glycogen residues and subsequent production of glucose-1-phosphate to be metabolized in glycolysis after conversion to glucose-6-phosphate. The importance of this as well as the significance of ATP formed in glycolysis versus that formed by the concerted action of the tricarboxylic acid (TCA) cycle processes and oxidative phosphorylation for maintenance of glutamate transport capacity in astrocytes is discussed. It is argued that glycolytically derived energy in the form of ATP may be of particular functional importance in this context.
    Despite the well-established use of kainate as a model for seizure activity and temporal lobe epilepsy, most studies have been performed at doses giving rise to general limbic seizures and have mainly focused on neuronal function. Little... more
    Despite the well-established use of kainate as a model for seizure activity and temporal lobe epilepsy, most studies have been performed at doses giving rise to general limbic seizures and have mainly focused on neuronal function. Little is known about the effect of lower doses of kainate on cerebral metabolism and particularly that associated with astrocytes. We investigated astrocytic and neuronal metabolism in the cerebral cortex of adult mice after treatment with saline (controls), a subconvulsive or a mildly convulsive dose of kainate. A combination of [1,2-(13)C]acetate and [1-(13)C]glucose was injected and subsequent nuclear magnetic resonance spectroscopy of cortical extracts was employed to distinctively map astrocytic and neuronal metabolism. The subconvulsive dose of kainate led to an instantaneous increase in the cortical lactate content, a subsequent reduction in the amount of [4,5-(13)C]glutamine and an increase in the calculated astrocytic TCA cycle activity. In contr...