Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
  • noneedit
  • Full Professor
    MSc and PhD (EPFL)
    Postdoctoral Research Fellow (Boston University, Virginia Tech)
    Humboldt Fellow (LMU Munich)
    Advanced Research Fellow (Warwick)edit
We introduce an heterogeneous nonlinear q-voter model with zealots and two types of susceptible voters, and study its non-equilibrium properties when the population is finite and well mixed. In this two-opinion model, each individual... more
We introduce an heterogeneous nonlinear q-voter model with zealots and two types of susceptible voters, and study its non-equilibrium properties when the population is finite and well mixed. In this two-opinion model, each individual supports one of two parties and is either a zealot or a susceptible voter of type q1 or q2. While here zealots never change their opinion, a qi-susceptible voter (i=1,2) consults a group of qi neighbors at each time step, and adopts their opinion if all group members agree. We show that this model violates the detailed balance whenever q1≠q2 and has surprisingly rich properties. Here, we focus on the characterization of the model's non-equilibrium stationary state (NESS) in terms of its probability distribution and currents in the distinct regimes of low and high density of zealotry. We unveil the NESS properties in each of these phases by computing the opinion distribution and the circulation of probability currents, as well as the two-point correlation functions at unequal times (formally related to a "probability angular momentum"). Our analytical calculations obtained in the realm of a linear Gaussian approximation are compared with numerical results.
We study the dynamics of the nonlinear q-voter model with inflexible zealots in a finite well-mixed population. In this system, each individual supports one of two parties and is either a susceptible voter or an inflexible zealot. At each... more
We study the dynamics of the nonlinear q-voter model with inflexible zealots in a finite well-mixed population. In this system, each individual supports one of two parties and is either a susceptible voter or an inflexible zealot. At each time step, a susceptible adopts the opinion of a neighbor if this belongs to a group of q≥2 neighbors all in the same state, whereas inflexible zealots never change their opinion. In the presence of zealots of both parties, the model is characterized by a fluctuating stationary state and, below a zealotry density threshold, the distribution of opinions is bimodal. After a characteristic time, most susceptibles become supporters of the party having more zealots and the opinion distribution is asymmetric. When the number of zealots of both parties is the same, the opinion distribution is symmetric and, in the long run, susceptibles endlessly swing from the state where they all support one party to the opposite state. Above the zealotry density threshold, when there is an unequal number of zealots of each type, the probability distribution is single-peaked and non-Gaussian. These properties are investigated analytically and with stochastic simulations. We also study the mean time to reach a consensus when zealots support only one party.
We study the oscillatory dynamics in the generic three-species rock-paper-scissors games with mutations. In the mean-field limit, different behaviors are found: (a) for high mutation rate, there is a stable interior fixed point with... more
We study the oscillatory dynamics in the generic three-species rock-paper-scissors games with mutations. In the mean-field limit, different behaviors are found: (a) for high mutation rate, there is a stable interior fixed point with coexistence of all species; (b) for low mutation rates, there is a region of the parameter space characterized by a limit cycle resulting from a Hopf bifurcation; (c) in the absence of mutations, there is a region where heteroclinic cycles yield oscillations of large amplitude (not robust against noise). After a discussion on the main properties of the mean-field dynamics, we investigate the stochastic version of the model within an individual-based formulation. Demographic fluctuations are therefore naturally accounted and their effects are studied using a diffusion theory complemented by numerical simulations. It is thus shown that persistent erratic oscillations (quasi-cycles) of large amplitude emerge from a noise-induced resonance phenomenon. We also analytically and numerically compute the average escape time necessary to reach a (quasi-)cycle on which the system oscillates at a given amplitude.
We present the exact solution for the full dynamics of a nonequilibrium spin chain and its dual reaction-diffusion model, for arbitrary initial conditions. The spin chain is driven out of equilibrium by coupling alternating spins to two... more
We present the exact solution for the full dynamics of a nonequilibrium spin chain and its dual reaction-diffusion model, for arbitrary initial conditions. The spin chain is driven out of equilibrium by coupling alternating spins to two thermal baths at different temperatures. In the reaction-diffusion model, this translates into spatially alternating rates for particle creation and annihilation, and even negative “temperatures” have a perfectly natural interpretation. Observables of interest include the magnetization, the particle density, and all correlation functions for both models. Two generic types of time dependence are found: if both temperatures are positive, the magnetization, density, and correlation functions decay exponentially to their steady-state values. In contrast, if one of the temperatures is negative, damped oscillations are observed in all quantities. They can be traced to a subtle competition of pair creation and annihilation on the two sublattices. We comment on the limitations of mean-field theory and propose an experimental realization of our model in certain conjugated polymers and linear chain compounds.
We generalize the classical Bass model of innovation diffusion to include a new class of agents-Luddites-that oppose the spread of innovation. Our model also incorporates ignorants, susceptibles, and adopters. When an ignorant and a... more
We generalize the classical Bass model of innovation diffusion to include a new class of agents-Luddites-that oppose the spread of innovation. Our model also incorporates ignorants, susceptibles, and adopters. When an ignorant and a susceptible meet, the former is converted to a susceptible at a given rate, while a susceptible spontaneously adopts the innovation at a constant rate. In response to the rate of adoption, an ignorant may become a Luddite and permanently reject the innovation. Instead of reaching complete adoption, the final state generally consists of a population of Luddites, ignorants, and adopters. The evolution of this system is investigated analytically and by stochastic simulations. We determine the stationary distribution of adopters, the time needed to reach the final state, and the influence of the network topology on the innovation spread. Our model exhibits an important dichotomy: When the rate of adoption is low, an innovation spreads slowly but widely; in c...
In this work, we consider a diffusive two-species d-dimensional model and study it in great detail. Two types of particles, with hard core, diffuse symmetrically and cross each other. For arbitrary dimensions, we obtain the exact density,... more
In this work, we consider a diffusive two-species d-dimensional model and study it in great detail. Two types of particles, with hard core, diffuse symmetrically and cross each other. For arbitrary dimensions, we obtain the exact density, the instantaneous, as well as noninstantaneous, two-point correlation functions for various initial conditions. We study the impact of correlations in the initial state on the dynamics. Finally, we map the one-dimensional version of the model under consideration onto a restricted solid-on-solid growth model with three states and solve its dynamics.
Nonequilibrium collective motion is ubiquitous in nature and often results in a rich collection of intringuing phenomena, such as the formation of shocks or patterns, subdiffusive kinetics, traffic jams, and nonequilibrium phase... more
Nonequilibrium collective motion is ubiquitous in nature and often results in a rich collection of intringuing phenomena, such as the formation of shocks or patterns, subdiffusive kinetics, traffic jams, and nonequilibrium phase transitions. These stochastic many-body features characterize transport processes in biology, soft condensed matter and, possibly, also in nanoscience. Inspired by these applications, a wide class of lattice-gas models
ABSTRACT
In the framework of the paradigmatic prisoner's dilemma game, we investigate the evolutionary dynamics of social dilemmas in the presence of "cooperation... more
In the framework of the paradigmatic prisoner's dilemma game, we investigate the evolutionary dynamics of social dilemmas in the presence of "cooperation facilitators." In our model, cooperators and defectors interact as in the classical prisoner's dilemma, where selection favors defection. However, here the presence of a small number of cooperation facilitators enhances the fitness (reproductive potential) of cooperators, while it does not alter that of defectors. In a finite population of size N, the dynamics of the prisoner's dilemma with facilitators is characterized by the probability that cooperation takes over (fixation probability) by the mean times to reach the absorbing states. These quantities are computed exactly using Fokker-Planck equations. Our findings, corroborated by stochastic simulations, demonstrate that the influence of facilitators crucially depends on the difference between their density z and the game's cost-to-benefit ratio r. When z > r, the fixation of cooperators is likely in a large population and, under weak selection pressure, invasion and replacement of defection by cooperation is favored by selection if b(z - r)(1 - z) > N(-1), where 0<b ≤ 1 is the cooperation payoff benefit. When z < r, the fixation probability of cooperators is exponentially enhanced by the presence of facilitators but defection is the dominating strategy.
The fixation properties of a simple prisoner's dilemma game in the presence of "cooperation facilitators" have... more
The fixation properties of a simple prisoner's dilemma game in the presence of "cooperation facilitators" have recently been investigated in finite and well-mixed populations for various dynamics [Mobilia, Phys. Rev. E 86, 011134 (2012)]. In a Comment, Miękisz claims that, for cooperation to be favored by selection in the standard prisoner's dilemma games with facilitators, it suffices that f(C)>f(D) (where f(C/D) are the respective fitnesses of cooperators and defectors). In this Reply, we show that, in generic prisoner's dilemma games with ℓ cooperation facilitators, it is generally not sufficient that a single cooperator has a higher fitness than defectors to ensure that selection favors cooperation. In fact, it is also necessary that selection promotes the replacement of defection by cooperation in a population of size N, which requires that the fixation probability of a single cooperator exceeds (N-ℓ)(-1). This replacement condition is independent of f(C)>f(D) and, when the payoff for mutual defection is negative, it is shown to be more stringent than the invasion condition. Our results, illustrated by a series of examples, considerably generalize those reported in the paper [Phys. Rev. E 86, 011134 (2012)] and in the aforementioned Comment whose claims are demonstrated to be relevant only for a special subclass of prisoner's dilemma games.

And 14 more