Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
... US6,255,560 Chimeric genes for transforming plant cells using viral promoters Monsanto Company July 3, 2001 RT Fraley; RB Horsch; SG Rogers ... 632,980 Binary viral expression system in plants EI du Pont de Nemours and Company October... more
... US6,255,560 Chimeric genes for transforming plant cells using viral promoters Monsanto Company July 3, 2001 RT Fraley; RB Horsch; SG Rogers ... 632,980 Binary viral expression system in plants EI du Pont de Nemours and Company October 14, 2003 NS Yadav; SC Falco ...
In this paper, we report the formation of protein based liquid droplets resulting in the formation of in vivo microcompartments in E. coli or tobacco cells. These microcompartments were generated by expressing elastin-like polypeptides... more
In this paper, we report the formation of protein based liquid droplets resulting in the formation of in vivo microcompartments in E. coli or tobacco cells. These microcompartments were generated by expressing elastin-like polypeptides (ELP), which have the ability to undergo a reversible phase transition, resulting in the formation of an aqueous two-phase system (ATPS) in the cytoplasm of the cell. We prove that these microcompartments are liquid by expressing a fusion protein consisting of ELP and GFP and by performing fluorescence recovery after photobleaching (FRAP) experiments at different stages of cell cultivation. In the initial phases of cell growth, the fusion protein concentration is low and is not sufficient to drive the formation of a second aqueous phase. As the intracellular fusion protein concentration increases with longer cultivation time, droplets start forming, and as protein expression continues, the droplets coalesce at the poles of the E. coli cells. FRAP experiments with cells at different growth stages reveals that the protein in these ELP based droplets is comprised of aqueous and not solid aggregates, as seen in typical inclusion bodies. Staining of the ribosomes and coimaging of the ELP-GFP fusion protein showed that these compartments exclude the protein making machinery of the cell, acting as depots for newly formed protein. It is also shown, in vitro, that ELP based droplets result in the exclusion of proteases, protecting proteins from degradation. Additional studies are still required to test this possibility in vivo. To the best of our knowledge, this is the first report characterizing the formation of an engineered extra aqueous phase in a living organism.
Low-cost recombinant antibodies could provide a new strategy to control Foot-and-mouth disease virus (FMDV) outbreaks by passive immunization of susceptible animals. In this study, a single chain variable antibody fragment (scFv)... more
Low-cost recombinant antibodies could provide a new strategy to control Foot-and-mouth disease virus (FMDV) outbreaks by passive immunization of susceptible animals. In this study, a single chain variable antibody fragment (scFv) recognizing FMDV coat protein VP1 was expressed in transgenic tobacco plants. To enhance the accumulation of scFv protein, the codon-usage of a murine hybridoma-derived scFv gene was adjusted to mimic highly expressed tobacco genes and fused to an elastin-like polypeptide (ELP) tag. This scFv–ELP fusion accumulated up to 0.8% of total soluble leaf protein in transgenic tobacco. To recover scFv–ELP protein from the leaf extract, a simple and scalable purification strategy was established. Purified scFv–ELP fusion was cleaved to separate the scFv portion. Finally, it was shown that the purified scFv proteins retained their capacity to bind the FMDV in the absence or presence of ELP fusion.
Plants have shown promise as bioreactors for the large-scale production of a wide variety of recombinant proteins. To increase the economic feasibility of this technology, numerous molecular approaches have been developed to enhance the... more
Plants have shown promise as bioreactors for the large-scale production of a wide variety of recombinant proteins. To increase the economic feasibility of this technology, numerous molecular approaches have been developed to enhance the production yield of these valuable proteins in plants. Alternatively, we chose to examine the temporal and spatial distribution of erythropoietin (EPO) accumulation during tobacco plant development, in order to establish the optimal harvesting time to further maximize heterologous protein recovery. EPO is used extensively worldwide for the treatment of anaemia and is currently the most commercially valuable biopharmaceutical on the market. Our results indicate that the concentration of recombinant EPO and endogenous total soluble protein (TSP) declined significantly for every leaf of the plant during maturation, although the rate of these declines was strongly dependent on the leaf’s position on the plant. As a result, the amount of EPO produced in leaves relative to TSP content remained essentially unchanged over the course of the plant’s life. Decreasing levels of recombinant protein in leaves was attributed to proteolytic degradation associated with tissue senescence since transgene silencing was not detected. We found that significantly higher concentrations of EPO within younger leaves more than compensated for their smaller size, when compared to their low-expressing, fully-grown counterparts. This suggests that fast-growing, young leaves should be periodically harvested from the plants as they continue to grow in order to maximize recombinant protein yield. These findings demonstrate that EPO accumulation is highly influenced by the plant’s physiology and development.
The capacity of human transposable elements (TEs) to promote cis natural antisense transcripts (cis-NATs) is revealed by the discovery of 48 718 human gene antisense transcriptional start sites (TSSs) within TE sequences. TSSs that yield... more
The capacity of human transposable elements (TEs) to promote cis natural antisense transcripts (cis-NATs) is revealed by the discovery of 48 718 human gene antisense transcriptional start sites (TSSs) within TE sequences. TSSs that yield cis-NATs are overrepresented among TE sequences, and TE-initiated cis-NATs are more abundant close to the 3′ ends of genes. The TE sequences that promote antisense transcription within human genes are relatively ancient, suggesting that selection has acted to conserve their function.
In this paper, we report the formation of protein based liquid droplets resulting in the formation of in vivo microcompartments in E. coli or tobacco cells. These microcompartments were generated by expressing elastin-like polypeptides... more
In this paper, we report the formation of protein based liquid droplets resulting in the formation of in vivo microcompartments in E. coli or tobacco cells. These microcompartments were generated by expressing elastin-like polypeptides (ELP), which have the ability to undergo a reversible phase transition, resulting in the formation of an aqueous two-phase system (ATPS) in the cytoplasm of the cell. We prove that these microcompartments are liquid by expressing a fusion protein consisting of ELP and GFP and by performing fluorescence recovery after photobleaching (FRAP) experiments at different stages of cell cultivation. In the initial phases of cell growth, the fusion protein concentration is low and is not sufficient to drive the formation of a second aqueous phase. As the intracellular fusion protein concentration increases with longer cultivation time, droplets start forming, and as protein expression continues, the droplets coalesce at the poles of the E. coli cells. FRAP experiments with cells at different growth stages reveals that the protein in these ELP based droplets is comprised of aqueous and not solid aggregates, as seen in typical inclusion bodies. Staining of the ribosomes and coimaging of the ELP-GFP fusion protein showed that these compartments exclude the protein making machinery of the cell, acting as depots for newly formed protein. It is also shown, in vitro, that ELP based droplets result in the exclusion of proteases, protecting proteins from degradation. Additional studies are still required to test this possibility in vivo. To the best of our knowledge, this is the first report characterizing the formation of an engineered extra aqueous phase in a living organism.
It was previously thought that epigenetic histone modifications of mammalian transposable elements (TEs) serve primarily to defend the genome against deleterious effects associated with their activity. However, we recently showed that,... more
It was previously thought that epigenetic histone modifications of mammalian transposable elements (TEs) serve primarily to defend the genome against deleterious effects associated with their activity. However, we recently showed that, genome-wide, human TEs can also be epigenetically modified in a manner consistent with their ability to regulate host genes. Here, we explore the ability of TE sequences to epigenetically regulate individual human genes by focusing on the histone modifications of promoter sequences derived from TEs. We found 1520 human genes that initiate transcription from within TE-derived promoter sequences. We evaluated the distributions of eight histone modifications across these TE-promoters, within and between the GM12878 and K562 cell lines, and related their modification status with the cell-type specific expression patterns of the genes that they regulate. TE-derived promoters are significantly enriched for active histone modifications, and depleted for repressive modifications, relative to the genomic background. Active histone modifications of TE-promoters peak at transcription start sites and are positively correlated with increasing expression within cell lines. Furthermore, differential modification of TE-derived promoters between cell lines is significantly correlated with differential gene expression. LTR-retrotransposon derived promoters in particular play a prominent role in mediating cell-type specific gene regulation, and a number of these LTR-promoter genes are implicated in lineage-specific cellular functions. The regulation of human genes mediated by histone modifications targeted to TE-derived promoters is consistent with the ability of TEs to contribute to the epigenomic landscape in a way that provides functional utility to the host genome.